Publications by authors named "Tiffany W Hsu"

As social media becomes a key channel for news consumption and sharing, proliferating partisan and mainstream news sources must increasingly compete for users' attention. While affective qualities of news content may promote engagement, it is not clear whether news source bias influences affective content production or virality, or whether any differences have changed over time. We analyzed the sentiment of ~30 million posts (on twitter.

View Article and Find Full Text PDF

Although social media plays an increasingly important role in communication around the world, social media research has primarily focused on Western users. Thus, little is known about how cultural values shape social media behavior. To examine how cultural affective values might influence social media use, we developed a new sentiment analysis tool that allowed us to compare the affective content of Twitter posts in the United States (55,867 tweets, 1,888 users) and Japan (63,863 tweets, 1,825 users).

View Article and Find Full Text PDF

Real-time functional magnetic resonance imaging (rt-fMRI) neurofeedback is a non-invasive, non-pharmacological therapeutic tool that may be useful for training behavior and alleviating clinical symptoms. Although previous work has used rt-fMRI to target brain activity in or functional connectivity between a small number of brain regions, there is growing evidence that symptoms and behavior emerge from interactions between a number of distinct brain areas. Here, we propose a new method for rt-fMRI, connectome-based neurofeedback, in which intermittent feedback is based on the strength of complex functional networks spanning hundreds of regions and thousands of functional connections.

View Article and Find Full Text PDF

Resting-state functional connectivity (rs-FC) is a promising neuromarker for cognitive decline in aging population, based on its ability to reveal functional differences associated with cognitive impairment across individuals, and because rs-fMRI may be less taxing for participants than task-based fMRI or neuropsychological tests. Here, we employ an approach that uses rs-FC to predict the Alzheimer's Disease Assessment Scale (11 items; ADAS11) scores, which measure overall cognitive functioning, in novel individuals. We applied this technique, connectome-based predictive modeling, to a heterogeneous sample of 59 subjects from the Alzheimer's Disease Neuroimaging Initiative, including normal aging, mild cognitive impairment, and AD subjects.

View Article and Find Full Text PDF