Publications by authors named "Tiffany Vuong"

Prenatal diagnosis of critical congenital heart disease (CCHD) has improved over time, and previous studies have identified CCHD subtype and socioeconomic status as factors influencing rates of prenatal diagnosis. Our objective of this single-center study was to compare prenatal diagnosis rates of newborns with CCHD admitted for cardiac intervention from the COVID-19 pandemic period (March 2020 to March 2021) to the pre-pandemic period and identify factors associated with the lack of CCHD prenatal diagnosis. The overall rate of CCHD and rates of the various CCHD diagnoses were calculated and compared with historical data collection periods (2009-2012 and 2013-2016).

View Article and Find Full Text PDF

N-of-1 trials provide a higher level of evidence than randomized controlled trials for determining which treatment works best for an individual, and the design readily accommodates testing of personalized nutrition. The aim of this systematic review was to synthesize nutrition-related studies using an N-of-1 design. The inclusion criterion was adult participants; the intervention/exposure was any nutrient, food, beverage, or dietary pattern; the comparators were baseline values, a control condition untreated or placebo, or an alternate treatment, alongside any outcomes such as changes in diet, body weight, biochemical outcomes, symptoms, quality of life, or a disease outcome resulting from differences in nutritional conditions.

View Article and Find Full Text PDF

Nanomaterials such as nanostructured surfaces, nanoparticles, and nanocomposites represent new viable sources for future therapeutics for cardiovascular diseases. The special properties of nanomaterials such as their intrinsic physiochemical properties, surface energy and surface topographies could actively enhance desirable cellular responses within the cardiovascular system, projecting a growing potential for clinical translation. Recent progress on nanomaterials opened up new opportunities for treating cardiovascular diseases.

View Article and Find Full Text PDF

Magnesium (Mg)-based bioresorbable cardiovascular scaffold (BCS) is a promising alternative to conventional permanent cardiovascular stents, but it faces the challenges of rapid degradation and poor endothelium recovery after device degradation. To address these challenges, we investigated poly(l-lactic acid) (PLLA), poly(lactic--glycolic acid) (PLGA) (90:10), PLGA (50:50), and polycaprolactone (PCL) coatings on Mg, respectively, and evaluated their surface and biological properties. Intact polymer coatings with complete coverage on Mg substrate were achieved.

View Article and Find Full Text PDF