Publications by authors named "Tiffany Simpson"

Rock hind (Epinephelus adscensionis) and spotted moray (Gymnothorax moringa) are ubiquitous mesopredators that co-occur in the nearshore waters of Ascension Island in the South Atlantic Ocean, where they have significant cultural and subsistence value, but management of their non-commercial take is limited. This isolated volcanic system is home to high biomass and low species diversity, which poses two key questions: How can two mesopredators that perform similar ecological roles coexist? And if these two species are so ecologically similar, can they be managed using the same approach? Here, we combined acoustic telemetry, stomach content analysis, and stable isotope analysis to (i) explore space use and diet choices within and between these two species and (ii) to assess appropriate species-specific management options. Although rock hind had high residency and small calculated home ranges (0.

View Article and Find Full Text PDF

Seawater contains a wealth of genetic information, representing the biodiversity of numerous species residing within a particular marine habitat. Environmental DNA (eDNA) metabarcoding offers a cost effective, non-destructive method for large scale monitoring of environments, as diverse taxonomic groups are detected using metabarcoding assays. A large-scale eDNA monitoring program of marine vertebrates was conducted across three sampling seasons (Spring 2018, Autumn 2019; Spring 2019) in coastal waters of Brazil.

View Article and Find Full Text PDF

Introduction: Injectable GnRH receptor agonists have been shown to improve cancer control when combined with radiotherapy. Prostate SBRT offers an abbreviated treatment course with comparable efficacy to conventionally fractionated radiotherapy. Relugolix is a new oral GnRH receptor antagonist which achieves rapid, sustained testosterone suppression.

View Article and Find Full Text PDF

Crabs can be transported beyond their native range anthropogenic-mediated means such as aquarium trade, live seafood trade and shipping. Once introduced into new locations, they can establish persisting populations and become invasive, often leading to negative impacts on the recipient environment and native species. Molecular techniques are increasingly being used as complementary tools in biosecurity surveillance and monitoring plans for invasive species.

View Article and Find Full Text PDF

Advances in high-throughput sequencing (HTS) are revolutionizing monitoring in marine environments by enabling rapid, accurate and holistic detection of species within complex biological samples. Research institutions worldwide increasingly employ HTS methods for biodiversity assessments. However, variance in laboratory procedures, analytical workflows and bioinformatic pipelines impede the transferability and comparability of results across research groups.

View Article and Find Full Text PDF

Population genetic data can provide valuable information on the demography of a species. For rare and elusive marine megafauna, samples for generating the data are traditionally obtained from tissue biopsies, which can be logistically difficult and expensive to collect and require invasive sampling techniques. Analysis of environmental DNA (eDNA) offers an alternative, minimally invasive approach to provide important genetic information.

View Article and Find Full Text PDF

Environmental DNA (eDNA) metabarcoding is a sensitive and widely used approach for species detection and biodiversity assessment. The most common eDNA collection method in aquatic systems is actively filtering water through a membrane, which is time consuming and requires specialized equipment. Ecological studies investigating species abundance or distribution often require more samples than can be practically collected with current filtration methods.

View Article and Find Full Text PDF
Article Synopsis
  • Metabarcoding of environmental DNA (eDNA) is changing how biodiversity is monitored, but existing bioinformatic tools can complicate workflow, affecting research consistency.
  • A new automated workflow called eDNAFlow streamlines the processing of eDNA data, making it scalable and reproducible using Nextflow and Singularity.
  • The pipeline’s effectiveness is demonstrated through its application to a coral diversity study and analysis of a large dataset, marking it as a pioneering approach in automated eDNA bioinformatics.
View Article and Find Full Text PDF

Effective biomonitoring is critical for driving management outcomes that ensure long-term sustainability of the marine environment. In recent years, environmental DNA (eDNA), coupled with metabarcoding methodologies, has emerged as a promising tool for generating biotic surveys of marine ecosystems, including those under anthropogenic pressure. However, more empirical data are needed on how to best implement eDNA field sampling approaches to maximize their utility for each specific application.

View Article and Find Full Text PDF

Prevention and early detection are well recognized as the best strategies for minimizing the risks posed by nonindigenous species (NIS) that have the potential to become marine pests. Central to this is the ability to rapidly and accurately identify the presence of NIS, often from complex environmental samples like biofouling and ballast water. Molecular tools have been increasingly applied to assist with the identification of NIS and can prove particularly useful for taxonomically difficult groups like ascidians.

View Article and Find Full Text PDF

Didemnid ascidians are notorious marine invaders, fouling infrastructure in many ecosystems globally. However, there have been few reports of direct interactions with native species in their natural environment. The invasive colonial ascidian Didemnum perlucidum was discovered in the Swan River estuary (Western Australia) growing on the native seagrass Halophila ovalis.

View Article and Find Full Text PDF