Publications by authors named "Tiffany R Baker"

E-cadherin and p120 catenin (p120) are essential for epithelial homeostasis, but can also exert pro-tumorigenic activities. Here, we resolve this apparent paradox by identifying two spatially and functionally distinct junctional complexes in non-transformed polarized epithelial cells: one growth suppressing at the apical zonula adherens (ZA), defined by the p120 partner PLEKHA7 and a non-nuclear subset of the core microprocessor components DROSHA and DGCR8, and one growth promoting at basolateral areas of cell-cell contact containing tyrosine-phosphorylated p120 and active Src. Recruitment of DROSHA and DGCR8 to the ZA is PLEKHA7 dependent.

View Article and Find Full Text PDF

Our goal in these analyses was to use genomic features from a test set of primary breast tumors to build an integrated transcriptome landscape model that makes relevant hypothetical predictions about the biological and/or clinical behavior of HER2-positive breast cancer. We interrogated RNA-Seq data from benign breast lesions, ER+, triple negative, and HER2-positive tumors to identify 685 differentially expressed genes, 102 alternatively spliced genes, and 303 genes that expressed single nucleotide sequence variants (eSNVs) that were associated with the HER2-positive tumors in our survey panel. These features were integrated into a transcriptome landscape model that identified 12 highly interconnected genomic modules, each of which represents a cellular processes pathway that appears to define the genomic architecture of the HER2-positive tumors in our test set.

View Article and Find Full Text PDF

Objectives: The sequencing by the PolyA selection is the most common approach for library preparation. With limited amount or degraded RNA, alternative protocols such as the NuGEN have been developed. However, it is not yet clear how the different library preparations affect the downstream analyses of the broad applications of RNA sequencing.

View Article and Find Full Text PDF

Fusion genes and fusion gene products are widely employed as biomarkers and therapeutic targets in hematopoietic cancers, but their applications have yet to be appreciated in solid tumors. Here, we report the use of SnowShoes-FTD, a powerful new analytic pipeline that can identify fusion transcripts and assess their redundancy and tumor subtype-specific distribution in primary tumors. In a study of primary breast tumors, SnowShoes-FTD was used to analyze paired-end mRNA-Seq data from a panel of estrogen receptor (ER)(+), HER2(+), and triple-negative primary breast tumors, identifying tumor-specific fusion transcripts by comparison with mRNA-Seq data from nontransformed human mammary epithelial cell cultures plus the Illumina Body Map data from normal tissues.

View Article and Find Full Text PDF

We used deep sequencing technology to profile the transcriptome, gene copy number, and CpG island methylation status simultaneously in eight commonly used breast cell lines to develop a model for how these genomic features are integrated in estrogen receptor positive (ER+) and negative breast cancer. Total mRNA sequence, gene copy number, and genomic CpG island methylation were carried out using the Illumina Genome Analyzer. Sequences were mapped to the human genome to obtain digitized gene expression data, DNA copy number in reference to the non-tumor cell line (MCF10A), and methylation status of 21,570 CpG islands to identify differentially expressed genes that were correlated with methylation or copy number changes.

View Article and Find Full Text PDF