Publications by authors named "Tiffany Pointon"

Objective: To evaluate the sensitivity and specificity of current criteria for the diagnosis of autoimmune encephalitis (AE) and the temporal onset of neuropsychiatric symptoms (NP) in a pediatric encephalitis cohort.

Background: Multiple criteria for AE have been developed, including the Graus and pediatric-focused Cellucci consensus criteria, and the Determining Etiology in Encephalitis (DEE) score for patients with encephalitis. Early identification and treatment of AE is crucial to improve outcomes, but this can be difficult given the frequent overlap of clinical presentation between AE and infectious encephalitis (IE).

View Article and Find Full Text PDF

Increased intrathecal IgG and oligoclonal bands (OCB) are seminal features of multiple sclerosis (MS). Although no such differences in MS blood total IgG antibodies have been reported, serum OCB are a common and persistent finding in MS and have a systemic source. Recent studies showed that IgG3 B cells and higher levels of serum IgG3 are linked to the development of MS.

View Article and Find Full Text PDF

A hallmark of the inflammatory response in multiple sclerosis (MS) is the presence of intrathecal Immunoglobulin G (IgG) antibodies and oligoclonal bands (OCBs). The biological activity of IgGs is modulated by changes in glycosylation. Using multiple immunoassays with common lectins for sialylation and galactosylation, we investigated levels of IgG glycosylation in 28 MS and 37 control sera as well as paired CSF and serum.

View Article and Find Full Text PDF

Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease of the central nervous system (CNS), the etiology of which is poorly understood. The most common laboratory abnormality associated with MS is increased intrathecal immunoglobulin G (IgG) synthesis and the presence of oligoclonal bands (OCBs) in the brain and cerebrospinal fluid (CSF). However, the major antigenic targets of these antibody responses are unknown.

View Article and Find Full Text PDF

Oligoclonal bands and increased IgG antibody levels can be detected in the cerebrospinal fluid in vast majority of patients with Multiple Sclerosis (MS). However, the antigenic specificity of oligoclonal IgG has yet to be determined. Using laser capture microdissection, we isolated single CD38+ plasma cells from lesion areas in two autopsy MS brains, and generated three recombinant antibodies (rAbs) from clonally expanded plasma cells.

View Article and Find Full Text PDF

Varicella-zoster virus (VZV) is a pathogenic human herpesvirus that causes varicella (chickenpox) as a primary infection following which it becomes latent in ganglionic neurons. Following viral reactivation many years later VZV causes herpes zoster (shingles) as well as a variety of other neurological syndromes. The molecular mechanisms of the conversion of the virus from a lytic to a latent state in ganglia are not well understood.

View Article and Find Full Text PDF

IgG oligoclonal bands (OCBs) are present in the cerebrospinal fluid (CSF) of more than 95% of patients with multiple sclerosis (MS), and are considered to be the immunological hallmark of disease. However, the target specificities of the IgG in MS OCBs have remained undiscovered. Nevertheless, evidence that OCBs are associated with increased levels of disease activity and disability support their probable pathological role in MS.

View Article and Find Full Text PDF

In vitro analyses of varicella zoster virus (VZV) reactivation from latency in human ganglia have been hampered by the inability to isolate virus by explantation or cocultivation techniques. Furthermore, attempts to study interaction of VZV with neurons in experimentally infected ganglion cells in vitro have been impaired by the presence of nonneuronal cells, which become productively infected and destroy the cultures. We have developed an in vitro model of VZV infection in which highly pure (>95 %) terminally differentiated human neurons derived from pluripotent stem cells were infected with VZV.

View Article and Find Full Text PDF

Intrathecal antibody production manifest as oligoclonal bands (OCBs) is a hallmark of multiple sclerosis (MS). Once present, OCBs can be detected in CSF throughout the lifetime of MS patients. To determine the specificity of the OCBs, we applied CSF IgG obtained from 2 consecutive lumbar punctures of 5 MS patients to screen phage-displayed random peptide libraries, and selected identical and related peptides that reacted with the paired CSF IgGs from each patient.

View Article and Find Full Text PDF