Publications by authors named "Tiffany M Tang"

Article Synopsis
  • The study challenges the common assumption that genetic variations affect traits in an additive manner by exploring non-additive interactions, specifically in the context of cardiac hypertrophy.
  • Researchers used advanced techniques, including low-signal signed iterative random forests and deep learning, to analyze cardiac MRI data from over 29,000 participants in the UK Biobank, revealing complex genetic interactions that traditional methods might overlook.
  • The findings highlight a sophisticated gene regulatory network, showing that certain genetic variants interact in intricate ways to influence cardiac structure, pointing to the importance of epistasis in understanding genetic contributions to heart diseases.
View Article and Find Full Text PDF

The combinatorial effect of genetic variants is often assumed to be additive. Although genetic variation can clearly interact non-additively, methods to uncover epistatic relationships remain in their infancy. We develop low-signal signed iterative random forests to elucidate the complex genetic architecture of cardiac hypertrophy.

View Article and Find Full Text PDF

Neuroinflammation is considered a key pathological process in neurodegenerative diseases of aging, including Alzheimer's disease (AD). Many studies have defined phenotypes of reactive microglia, the brain-resident macrophages, with different antigenic markers to identify those potentially causing inflammatory damage. We took an alternative approach with the goal of characterizing the distribution of purinergic receptor P2RY12-positive microglia, a marker previously defined as identifying homeostatic or non-activated microglia.

View Article and Find Full Text PDF

The focus of this study is the expression of Toll-like receptor-3 (TLR-3), a receptor for double-stranded RNA, in human brains affected by Alzheimer's disease (AD) pathology. Toll-like receptors are a family of pattern recognition molecules primarily involved in host defenses to microbial pathogens, but roles in neurodegenerative disease have also been shown, as amyloid beta (Aβ) can be a ligand for TLR-2 and -4 and α-synuclein for TLR-1 and TLR-2, while TLR-9 activation promotes Aβ removal. However, involvement of TLR-3 in AD has not been rigorously studied.

View Article and Find Full Text PDF

Microglia are dependent on signaling through the colony stimulating factor-1 receptor (CSF-1R/CD115) for growth and survival. Activation of CSF-1R can lead to cell division, while blocking CSF-1R can lead to rapid microglia cell death. CSF-1R has two ligands, the growth factors colony stimulating factor-1 (CSF-1) and the more recently identified interleukin-34 (IL-34).

View Article and Find Full Text PDF

Enhanced inflammation has been associated with Alzheimer's disease (AD) and diseases with Lewy body (LB) pathology, such as Parkinson's disease (PD) and dementia with Lewy bodies (DLB). One issue is whether amyloid and tangle pathology, features of AD, or α-synuclein LB pathology have similar or different effects on brain inflammation. An aim of this study was to examine if certain features of inflammation changed in brains with increasing LB pathology.

View Article and Find Full Text PDF