Multiple lines of evidence at whole animal, cellular and molecular levels implicate polycyclic aromatic compounds (PACs) with three rings as drivers of crude oil toxicity to developing fish. Phenanthrene (P0) and its alkylated homologs (C1- through C4-phenanthrenes) comprise the most prominent subfraction of tricyclic PACs in crude oils. Among this family, P0 has been studied intensively, with more limited detail available for the C4-phenanthrene 1-methyl-7-isopropyl-phenanthrene (1-M,7-IP, or retene).
View Article and Find Full Text PDFChemical pollution can degrade aquatic ecosystems. Chinook salmon in contaminated habitats are vulnerable to health impacts from toxic exposures. Few studies have been conducted on adverse health outcomes associated with current levels and mixtures of contaminants.
View Article and Find Full Text PDFPacific herring (), a cornerstone of marine food webs, generally spawn on marine macroalgae in shallow nearshore areas that are disproportionately at risk from oil spills. Herring embryos are also highly susceptible to toxicity from chemicals leaching from oil stranded in intertidal and subtidal zones. The water-soluble components of crude oil trigger an adverse outcome pathway that involves disruption of the physiological functions of cardiomyocytes in the embryonic herring heart.
View Article and Find Full Text PDFAtlantic haddock (Melanogrammus aeglefinus) embryos bind dispersed crude oil droplets to the eggshell and are consequently highly susceptible to toxicity from spilled oil. We established thresholds for developmental toxicity and identified any potential long-term or latent adverse effects that could impair the growth and survival of individuals. Embryos were exposed to oil for eight days (10, 80 and 300 μg oil/L, equivalent to 0.
View Article and Find Full Text PDFThere is a growing awareness that transient, sublethal embryonic exposure to crude oils cause subtle but important forms of delayed toxicity in fish. While the precise mechanisms for this loss of individual fitness are not well understood, they involve the disruption of early cardiogenesis and a subsequent pathological remodeling of the heart much later in juveniles. This developmental cardiotoxicity is attributable, in turn, to the inhibitory actions of crude oil-derived mixtures of polycyclic aromatic compounds (PACs) on specific ion channels and other proteins that collectively drive the rhythmic contractions of heart muscle cells via excitation-contraction coupling.
View Article and Find Full Text PDFCardiac remodeling results from both physiological and pathological stimuli. Compared with mammalian hearts, fish hearts show a broader array of remodeling changes in response to environmental influences, providing exceptional models for dissecting the molecular and cellular bases of cardiac remodeling. We recently characterized a form of pathological remodeling in juvenile pink salmon () in response to crude oil exposure during embryonic cardiogenesis.
View Article and Find Full Text PDFAs Arctic ice recedes, future oil spills pose increasing risk to keystone species and the ecosystems they support. We show that Polar cod (Boreogadus saida), an energy-rich forage fish for marine mammals, seabirds, and other fish, are highly sensitive to developmental impacts of crude oil. Transient oil exposures ≥300 μg/L during mid-organogenesis disrupted the normal patterning of the jaw as well as the formation and function of the heart, in a manner expected to be lethal to post-hatch larvae.
View Article and Find Full Text PDFThe potential bioavailability of toxic chemicals from oil spills to water column organisms such as fish embryos may be influenced by physical dispersion along an energy gradient. For example, a surface slick with minimal wave action (low energy) could potentially produce different toxic effects from high energy situations such as pressurized discharge from a blown wellhead. Here we directly compared the toxicity of water accommodated fractions (WAFs) of oil prepared with low and high mixing energy (LEWAFs and HEWAFs, respectively) using surface oil samples collected during the 2010 Deepwater Horizon spill, and embryos of a representative nearshore species, red drum (Sciaenops ocellatus).
View Article and Find Full Text PDFThe impact of crude oil pollution on early life stages (ELS) of fish, including larvae and embryos, has received considerable attention in recent years. Of the organic components present in crude oil, polycyclic aromatic hydrocarbons (PAHs) are considered the main class of compounds responsible for toxic effects in marine organisms. Although evidence suggests that they are more toxic, alkylated PAHs remain much less studied than their unsubstituted congeners.
View Article and Find Full Text PDFThe aquatic food web of the Great Lakes has been contaminated with polychlorinated biphenyls (PCBs) since the mid-20th century. Threats of PCB exposures to long-lived species of fish, such as lake sturgeon (Acipenser fulvescens), have been uncertain because of a lack of information on the relative sensitivity of the species. The objective of the present study was to evaluate the sensitivity of early-life stage lake sturgeon to 3,3',4,4',5-pentachlorobiphenyl (PCB-126) or 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) exposure.
View Article and Find Full Text PDFRecent studies have shown that crude oil exposure affects cardiac development in fish by disrupting excitation-contraction (EC) coupling. We previously found that eggs of Atlantic haddock (Melanogrammus aeglefinus) bind dispersed oil droplets, potentially leading to more profound toxic effects from uptake of polycyclic aromatic hydrocarbons (PAHs). Using lower concentrations of dispersed crude oil (0.
View Article and Find Full Text PDFCrude oils from distinct geological sources worldwide are toxic to developing fish hearts. When oil spills occur in fish spawning habitats, natural resource injury assessments often rely on conventional morphometric analyses of heart form and function. The extent to which visible indicators correspond to molecular markers for cardiovascular stress is unknown for pelagic predators from the Gulf of Mexico.
View Article and Find Full Text PDFTo better understand the impact of the Deepwater Horizon (DWH) incident on commercially and ecologically important pelagic fish species, a mahi-mahi spawning program was developed to assess the effect of embryonic exposure to DWH crude oil with particular emphasis on the effects of weathering and dispersant on the magnitude of toxicity. Acute lethality (96 h LC50) ranged from 45.8 (28.
View Article and Find Full Text PDFInterspecific difference in the developmental toxicity of crude oil to embryonic fish allows the prediction of injury extent to a number of resident fish species in oil spill sites. This study clarifies the comparative developmental effects of Iranian heavy crude oil (IHCO) on the differences of biouptake and toxic sensitivity between embryonic spotted sea bass (Lateolabrax maculates) and olive flounder (Paralichthys olivaceus). From 24 h after exposure to IHCO, several morphological defects were observed in both species of embryonic fish, including pericardial edema, dorsal curvature of the trunk, developmental delay, and reduced finfolds.
View Article and Find Full Text PDFThe 1989 Exxon Valdez disaster exposed embryos of pink salmon and Pacific herring to crude oil in shoreline spawning habitats throughout Prince William Sound, Alaska. The herring fishery collapsed four years later. The role of the spill, if any, in this decline remains one of the most controversial unanswered questions in modern natural resource injury assessment.
View Article and Find Full Text PDFThe Deepwater Horizon disaster released more than 636 million L of crude oil into the northern Gulf of Mexico. The spill oiled upper surface water spawning habitats for many commercially and ecologically important pelagic fish species. Consequently, the developing spawn (embryos and larvae) of tunas, swordfish, and other large predators were potentially exposed to crude oil-derived polycyclic aromatic hydrocarbons (PAHs).
View Article and Find Full Text PDFIn November 2007, the container ship Cosco Busan released 54,000 gallons of bunker fuel oil into San Francisco Bay. The accident oiled shoreline near spawning habitats for the largest population of Pacific herring on the west coast of the continental United States. We assessed the health and viability of herring embryos from oiled and unoiled locations that were either deposited by natural spawning or incubated in subtidal cages.
View Article and Find Full Text PDFPetroleum-derived compounds, including polycyclic aromatic hydrocarbons (PAHs), commonly occur as complex mixtures in the environment. Recent studies using the zebrafish experimental model have shown that PAHs are toxic to the embryonic cardiovascular system, and that the severity and nature of this developmental cardiotoxicity varies by individual PAH. In the present study we characterize the toxicity of the relatively higher molecular weight 5-ring PAHs benzo[a]pyrene (BaP), benzo[e]pyrene (BeP), and benzo[k]fluoranthene (BkF).
View Article and Find Full Text PDFExposure to high concentrations of crude oil produces a lethal syndrome of heart failure in fish embryos. Mortality is caused by cardiotoxic polycyclic aromatic hydrocarbons (PAHs), ubiquitous components of petroleum. Here, we show that transient embryonic exposure to very low concentrations of oil causes toxicity that is sublethal, delayed, and not counteracted by the protective effects of cytochrome P450 induction.
View Article and Find Full Text PDFConventional water chemistry parameters such as hardness, alkalinity, and organic carbon are known to affect the acutely lethal toxicity of copper to fish and other aquatic organisms. In the present study, we investigate the influence of these water chemistry parameters on short-term (3 h), sublethal (0-40 microg/L) copper toxicity to the peripheral mechanosensory system of larval zebrafish (Danio rerio) using an in vivo fluorescent marker of lateral line sensory neuron (hair cell) integrity. We studied the influence of hardness (via CaCl2, MgSO4, or both at a 2:1 molar ratio), sodium (via NaHCO3 or NaCl), and organic carbon on copper-induced neurotoxicity to zebrafish lateral line neurons over a range of environmentally relevant water chemistries.
View Article and Find Full Text PDFFipronil is a phenylpyrazole insecticide designed to selectively inhibit insect gamma-aminobutyric acid (GABA) receptors. Although fipronil is often used in or near aquatic environments, few studies have assessed the effects of this neurotoxicant on aquatic vertebrates at sensitive life stages. We explored the toxicological effects of fipronil on embryos and larvae using the zebrafish (Danio rerio) experimental model system.
View Article and Find Full Text PDFDissolved copper is an increasingly common non-point source contaminant in urban and urbanizing watersheds. In the present study, we investigated the sublethal effects of dissolved copper on the peripheral mechanosensory system, or lateral line, of larval zebrafish (Danio rerio). Zebrafish larvae were exposed to copper (0-65 microg/L), and the cytotoxic responses of individual lateral line receptor neurons were examined using a combination of in vivo fluorescence imaging, confocal microscopy, scanning electron microscopy, and conventional histology.
View Article and Find Full Text PDF