Publications by authors named "Tiffany L Vanlieshout"

CARM1 (coactivator associated arginine methyltransferase 1) has recently emerged as a powerful regulator of skeletal muscle biology. However, the molecular mechanisms by which the methyltransferase remodels muscle remain to be fully understood. In this study, skeletal muscle-specific knockout (mKO) mice exhibited lower muscle mass with dysregulated macroautophagic/autophagic and atrophic signaling, including depressed AMP-activated protein kinase (AMPK) site-specific phosphorylation of ULK1 (unc-51 like autophagy activating kinase 1; Ser555) and FOXO3 (forkhead box O3; Ser588), as well as MTOR (mechanistic target of rapamycin kinase)-induced inhibition of ULK1 (Ser757), along with AKT/protein kinase B site-specific suppression of FOXO1 (Ser256) and FOXO3 (Ser253).

View Article and Find Full Text PDF

Purpose: The purpose of this study was to determine how the intersection of coactivator-associated arginine methyltransferase 1 (CARM1) and biological sex affects skeletal muscle adaptations to chronic physical activity.

Methods: Twelve-week-old female (F) and male (M) wild-type (WT) and CARM1 skeletal muscle-specific knockout (mKO) mice were randomly assigned to sedentary (SED) or voluntary wheel running (VWR) experimental groups. For 8 wk, the animals in the VWR cohort had volitional access to running wheels.

View Article and Find Full Text PDF

Coactivator-associated arginine methyltransferase 1 (CARM1) catalyzes the methylation of arginine residues on target proteins critical for health and disease. The purpose of this study was to characterize the effects of short-term, pharmacological CARM1 inhibition on skeletal muscle size, function, and atrophy. Adult mice ( = 10 or 11/sex) were treated with either a CARM1 inhibitor (150 mg/kg EZM2302; EZM) or vehicle (Veh) via oral gavage for 11-13 days and muscle mass, function, and exercise capacity were assessed.

View Article and Find Full Text PDF

Objective: Coactivator-associated arginine methyltransferase 1 (CARM1) catalyzes the methylation of arginine residues on target proteins to regulate critical processes in health and disease. A mechanistic understanding of the role(s) of CARM1 in skeletal muscle biology is only gradually emerging. The purpose of this study was to elucidate the function of CARM1 in regulating the maintenance and plasticity of skeletal muscle.

View Article and Find Full Text PDF

Coactivator-associated arginine methyltransferase 1 (CARM1) is an emerging mediator of skeletal muscle plasticity. We employed genetic, physiologic, and pharmacologic approaches to determine whether CARM1 regulates the master neuromuscular phenotypic modifier AMP-activated protein kinase (AMPK). CARM1 skeletal muscle-specific knockout (mKO) mice displayed reduced muscle mass and dysregulated autophagic and atrophic processes downstream of AMPK.

View Article and Find Full Text PDF

Protein arginine methyltransferases (PRMTs) are a family of enzymes that catalyze the methylation of arginine residues on target proteins and thus alter the stability, localization, or activity of the substrate. In doing so, PRMTs mediate a variety of intracellular functions that are essential for survival. Additionally, PRMT dysregulation is involved in a number of the most prevalent health disorders, including cancer and neurodegenerative and cardiovascular diseases, as well as in the aging process.

View Article and Find Full Text PDF

Protein arginine methyltransferases (PRMTs) are a family of enzymes that catalyze the methylation of arginine residues on target proteins. While dysregulation of PRMTs has been documented in a number of the most prevalent diseases, our understanding of PRMT biology in human skeletal muscle is limited. This study served to address this knowledge gap by exploring PRMT expression and function in human skeletal muscle in vivo and characterizing PRMT biology in response to acute and chronic stimuli for muscle plasticity.

View Article and Find Full Text PDF

Protein arginine methyltransferases (PRMTs) are a family of enzymes that catalyze the methylation of arginine residues on target proteins, thereby mediating a diverse set of intracellular functions that are indispensable for survival. Indeed, full-body knockouts of specific PRMTs are lethal and PRMT dysregulation has been implicated in the most prevalent chronic disorders, such as cancers and cardiovascular disease (CVD). PRMTs are now emerging as important mediators of skeletal muscle phenotype and plasticity.

View Article and Find Full Text PDF

Purpose: This study aimed to determine protein arginine methyltransferase 1 (PRMT1), -4 (also known as coactivator-associated arginine methyltransferase 1 [CARM1]), and -5 expression and function during acute, exercise-induced skeletal muscle remodeling in vivo.

Methods: C57BL/6 mice were assigned to one of three experimental groups: sedentary, acute bout of exercise, or acute exercise followed by 3 h of recovery. Mice in the exercise groups performed a single bout of treadmill running at 15 m·min for 90 min.

View Article and Find Full Text PDF