Publications by authors named "Tiffany Corbet"

Motor recovery following stroke is believed to necessitate alteration in functional connectivity between cortex and muscle. Cortico-muscular coherence has been proposed as a potential biomarker for post-stroke motor deficits, enabling a quantification of recovery, as well as potentially indicating the regions of cortex involved in recovery of function. We recorded simultaneous EEG and EMG during wrist extension from healthy participants and patients following ischaemic stroke, evaluating function at three time points post-stroke.

View Article and Find Full Text PDF

Synchronization of neural activity as measured with functional connectivity (FC) is increasingly used to study the neural basis of brain disease and to develop new treatment targets. However, solid evidence for a causal role of FC in disease and therapy is lacking. Here, we manipulated FC of the ipsilesional primary motor cortex in ten chronic human stroke patients through brain-computer interface technology with visual neurofeedback.

View Article and Find Full Text PDF

Hand grasping is a sophisticated motor task that has received much attention by the neuroscientific community, which demonstrated how grasping activates a network involving parietal, pre-motor and motor cortices using fMRI, ECoG, LFPs and spiking activity. Yet, there is a need for a more precise spatio-temporal analysis as it is still unclear how these brain activations over large cortical areas evolve at the sub-second level. In this study, we recorded ten human participants (1 female) performing visually-guided, self-paced reaching and grasping with precision or power grips.

View Article and Find Full Text PDF

Motor imagery (MI) has been largely studied as a way to enhance motor learning and to restore motor functions. Although it is agreed that users should emphasize kinesthetic imagery during MI, recordings of MI brain patterns are not sufficiently reliable for many subjects. It has been suggested that the usage of somatosensory feedback would be more suitable than standardly used visual feedback to enhance MI brain patterns.

View Article and Find Full Text PDF

Objective: Neurofeedback training of motor cortex activations with brain-computer interface systems can enhance recovery in stroke patients. Here we propose a new approach which trains resting-state functional connectivity associated with motor performance instead of activations related to movements.

Methods: Ten healthy subjects and one stroke patient trained alpha-band coherence between their hand motor area and the rest of the brain using neurofeedback with source functional connectivity analysis and visual feedback.

View Article and Find Full Text PDF