Publications by authors named "Tiffani C Chance"

Pre-hospital potentially preventable trauma related deaths are mainly due to hypoperfusion-induced tissue hypoxia leading to irreversible organ dysfunction at or near the point of injury or during transportation prior to receiving definitive therapy. The prolyl hydroxylase domain (PHD) is an oxygen sensor that regulates tissue adaptation to hypoxia by stabilizing hypoxia inducible factor (HIF). The benefit of PHD inhibitors (PHDi) in the treatment of anemia and lactatemia arises from HIF stabilization, which stimulates endogenous production of erythropoietin and activates lactate recycling through gluconeogenesis.

View Article and Find Full Text PDF

Background: Extracellular vesicles (EVs) isolated from cardiosphere-derived cells (CDC-EVs) are coming to light as a unique cell-free therapeutic. Because of their novelty, however, there still exist prominent gaps in knowledge regarding their therapeutic potential. Herein the therapeutic potential of CDC-EVs in a rat model of acute traumatic coagulopathy induced by multiple injuries and hemorrhagic shock is outlined.

View Article and Find Full Text PDF

Background: Cold storage of platelets in plasma maintains hemostatic function and is an attractive alternative to room temperature platelets (RTPs). We have recently shown that functional differences between cold-stored platelets (CSPs) and RTPs after 5-day storage are associated with mitochondrial respiration and that CSPs in platelet (PLT) additive solution (PAS) can maintain hemostatic function for at least 15 days.

Study Design And Methods: This study tested the hypothesis that cold storage in PAS preserves mitochondrial integrity by reducing PLT apoptosis.

View Article and Find Full Text PDF

Background: Mesenchymal stem/stromal cell (MSC)-derived extracellular vesicles (EVs) are a possible cell-free alternative to MSCs because they retain the regenerative potential of MSCs, while still mitigating some of their limitations (such as the possible elicitation of host immune responses). The promotion and restoration of angiogenesis, however, is an important component in treating trauma-related injuries, and has not been fully explored with EVs. Herein, we describe the effects of monolayer adipose-derived EVs, spheroid adipose-derived EVs (SAd-EVs), monolayer bone marrow-derived EVs (MBM-EVs), and spheroid bone marrow-derived EVs (SBM-EVs) on human umbilical vein endothelial cell (HUVEC) tube formation and mitochondrial respiration.

View Article and Find Full Text PDF

Background: Mesenchymal stromal cell (MSC)-derived extracellular vesicles (EVs) have great potential as a cell-free therapy in wound healing applications. Because EV populations are not equivalent, rigorous characterization is needed before clinical use. Although there has been much focus on their RNA composition and regenerative capabilities, relatively less is known regarding the effects of MSC cell type (adipose tissue [Ad-MSCs] or bone marrow [BM-MSCs]) and culture condition (monolayer or spheroid) on MSC-EV performance, including characteristics related to their ability to promote coagulation, which could determine EV safety if administered intravenously.

View Article and Find Full Text PDF