Traumatic brain injury (TBI) is a heterogeneous brain injury which represents one of the leading causes of mortality and disability worldwide. Rodent TBI models are helpful to examine the cellular and molecular mechanisms after injury. Controlled cortical impact (CCI) is one of the most commonly used TBI models in rats and mice, based on its consistency of injury and ease of implementation.
View Article and Find Full Text PDFMild-traumatic brain injury (mTBI) represents ~80% of all emergency room visits and increases the probability of developing long-term cognitive disorders in children. To date, molecular and cellular mechanisms underlying post-mTBI cognitive dysfunction are unknown. Astrogliosis has been shown to significantly alter astrocytes' properties following brain injury, potentially leading to significant brain dysfunction.
View Article and Find Full Text PDFBrain edema is a common feature of brain injuries, which leads to increased intracranial pressure (ICP) and ischemia that worsen outcome. Current management of edema focuses on reduction of ICP, but there are no treatments targeting the molecular players directly involved in edema process. The perivascular astrocyte endfeet are critical in maintaining brain homeostasis with ionic and water exchange; in this context, aquaporins (AQPs), astrocyte water channels, have emerged as privileged targets for edema modulation.
View Article and Find Full Text PDFComplex cellular and molecular events occur in the neurovascular unit after stroke, such as blood-brain barrier (BBB) dysfunction and inflammation that contribute to neuronal death, neurological deterioration and mortality. Caveolin-1 (Cav-1) has distinct physiological functions such as caveolae formation associated with endocytosis and transcytosis as well as in signaling pathways. Cav-1 has been proposed to be involved in BBB dysfunction after brain injury; however, its precise role is poorly understood.
View Article and Find Full Text PDF