Publications by authors named "Tifanie Sbriscia"

Selective androgen receptor modulators (SARMs) are androgens with tissue-selective activity. SARMs that have anabolic activity on muscle while having minimal stimulatory activity on prostate are classified as SARM agonists. They can be used to prevent the loss of lean body mass that is associated with cancer, immunodeficiency, renal disease and aging.

View Article and Find Full Text PDF

Androgens are required for the maintenance of normal sexual activity in adulthood and for enhancing muscle growth and lean body mass in adolescents and adults. Androgen receptor (AR) ligands with tissue selectivity (selective androgen receptor modulators, or SARMs) have potential for treating muscle wasting, hypogonadism of aging, osteoporosis, female sexual dysfunction, and other indications. JNJ-37654032 is a nonsteroidal AR ligand with mixed agonist and antagonist activity in androgen-responsive cell-based assays.

View Article and Find Full Text PDF

Androgen receptor (AR) ligands with tissue selectivity (selective androgen receptor modulators, or SARMs) have potential for treating muscle wasting, hypogonadism of aging, osteoporosis, female sexual dysfunction, and other indications. JNJ-28330835 is a nonsteroidal AR ligand with mixed agonist and antagonist activity in androgen-responsive cell-based assays. It is an orally active SARM with muscle selectivity in orchidectomized rat models.

View Article and Find Full Text PDF

A novel series of pyrazolines 2 have been designed, synthesized, and evaluated by in vivo screening as tissue-selective androgen receptor modulators (SARMs). Structure-activity relationships (SAR) were investigated at the R1 to R6 positions as well as the core pyrazoline ring and the anilide linker. Overall, strong electron-withdrawing groups at the R1 and R2 positions and a small group at the R5 and R6 position are optimal for AR agonist activity.

View Article and Find Full Text PDF

The synthesis and in vivo SAR of 2-(2,2,2)-trifluoroethyl-benzimidazoles are described. Prostate antagonism and/or levator ani agonism can be modulated by varying the substitution at the 2-position of 5,6-dichloro-benzimidazoles. Potent androgen agonists on the muscle were discovered that strongly bind to the androgen receptor (2-17 nM) and show potent in vivo efficacy (0.

View Article and Find Full Text PDF

The synthesis and in vivo SAR of N-benzyl, N-aceto, and N-ethylene ether derivatives of 2-(2,2,2-trifluoroethyl)-5,6-dichloro-benzimidazole as novel androgen receptor antagonists are described. SAR studies led to the discovery of 4-bromo-benzyl benzimidazole 17 as a more potent androgen receptor antagonist in the rat prostate (ID(50)=0.13mg/day), compared with bicalutamide (ID(50)=0.

View Article and Find Full Text PDF

The synthesis and in vivo SAR of 5,6-dichloro-benzimidazole derivatives as novel selective androgen receptor antagonists are described. During screening of 2-alkyl benzimidazoles, it was found that a trifluoromethyl group greatly enhances antagonist activity in the prostate. Benzimidazole 1 is a potent AR antagonist in the rat prostate (ID50 = 0.

View Article and Find Full Text PDF

A novel imidazolopyrazole derivative has been fortuitously discovered as potent selective androgen receptor modulator with in vivo efficacy.

View Article and Find Full Text PDF

The pharmacological activity of JNJ-26146900 is described. JNJ-26146900 is a nonsteroidal androgen receptor (AR) ligand with tissue-selective activity in rats. The compound was evaluated in in vitro and in vivo models of AR activity.

View Article and Find Full Text PDF

A novel series of hydantoin derivatives were identified by in vivo studies as tissue selective androgen receptor modulators. SAR around this series revealed that the function of the ligand could be altered by minor structural modification.

View Article and Find Full Text PDF