Cancer dependency maps have accelerated the discovery of tumor vulnerabilities that can be exploited as drug targets when translatable to patients. The Cancer Genome Atlas (TCGA) is a compendium of 'maps' detailing the genetic, epigenetic and molecular changes that occur during the pathogenesis of cancer, yet it lacks a dependency map to translate gene essentiality in patient tumors. Here, we used machine learning to build translational dependency maps for patient tumors, which identified tumor vulnerabilities that predict drug responses and disease outcomes.
View Article and Find Full Text PDFWhen mapped to the environments we interact with on a daily basis, the 36 million microbial cells per hour that humans emit leave a trail of evidence that can be leveraged for forensic analysis. We employed 16S rRNA amplicon sequencing to map unique microbial sequence variants between human skin and building surfaces in three experimental conditions: over time during controlled and uncontrolled incidental interactions with a door handle, and during multiple mock burglaries in ten real residences. We demonstrate that humans (n = 30) leave behind microbial signatures that can be used to track interaction with various surfaces within a building, but the likelihood of accurately detecting the specific burglar for a given home was between 20-25%.
View Article and Find Full Text PDF