Publications by authors named "Tiezhu Xu"

The critical challenges in developing ultralow-temperature proton-based energy storage systems are enhancing the diffusion kinetics of charge carriers and inhibiting water-triggered interfacial side reactions between electrolytes and electrodes. Here an acid-salt hybrid electrolyte with a stable anion-cation-HO solvation structure that realizes unconventional proton transport at ultralow temperature is shown, which is crucial for electrodes and devices to achieve high rate-capacity and stable interface compatibility with electrodes. Through multiscale simulations and experimental investigations in the electrolyte employing ZnCl introduced into 0.

View Article and Find Full Text PDF

Ionic and electronic transport in electrodes is crucial for electrochemical energy storage technology. To optimize the transport pathway of ions and electrons, electrode materials are minimized to nanometer-sized dimensions, leading to problems of volumetric performance, stability, cost, and pollution. Here we find that a bulk hexagonal molybdenum oxide with unconventional ion channels can store large amounts of protons at a high rate even if its particle size is tens of micrometers.

View Article and Find Full Text PDF

Achieving all-solid-state lithium-based batteries with high energy densities requires lightweight and ultrathin solid-state electrolytes (SSEs) with high Li conductivity, but this still poses significant challenges. Herein, we designed a robust and mechanically flexible SSE (denoted BC-PEO/LiTFSI) by using an environmentally friendly and low-cost approach that involves bacterial cellulose (BC) as a three-dimensional (3D) rigid backbone. In this design, BC-PEO/LiTFSI is tightly integrated and polymerized through intermolecular hydrogen bonding, and the rich oxygen-containing functional groups from the BC filler also provide the active site for Li hopping transport.

View Article and Find Full Text PDF

The sluggish ionic transport in thick electrodes and freezing electrolytes has limited electrochemical energy storage devices in lots of harsh environments for practical applications. Here, a 3D-printed proton pseudocapacitor based on high-mass-loading 3D-printed WO anodes, Prussian blue analog cathodes, and anti-freezing electrolytes is developed, which can achieve state-of-the-art electrochemical performance at low temperatures. Benefiting from the cross-scale 3D electrode structure using a 3D printing direct ink writing technique, the 3D-printed cathode realizes an ultrahigh areal capacitance of 7.

View Article and Find Full Text PDF

Simultaneously improving the energy density and power density of electrochemical energy storage systems is the ultimate goal of electrochemical energy storage technology. An effective strategy to achieve this goal is to take advantage of the high capacity and rapid kinetics of electrochemical proton storage to break through the power limit of batteries and the energy limit of capacitors. This article aims to review the research progress on the physicochemical properties, electrochemical performance, and reaction mechanisms of electrode materials for electrochemical proton storage.

View Article and Find Full Text PDF

External photo-stimuli on heterojunctions commonly induce an electric potential gradient across the interface therein, such as photovoltaic effect, giving rise to various present-day technical devices. In contrast, in-plane potential gradient along the interface has been rarely observed. Here we show that scanning a light beam can induce a persistent in-plane photoelectric voltage along, instead of across, silicon-water interfaces.

View Article and Find Full Text PDF