Publications by authors named "Tiezhi Zhang"

Background: Radiochromic film (RCF) dosimeters with their high spatial resolution and tissue equivalent properties are conveniently used for two-dimensional and small-field dosimetry. OC-1 is a new model of RCF dosimeter that was commercially introduced recently. Due to its novelty there is a need to characterize its response in various radiation beam types.

View Article and Find Full Text PDF
Article Synopsis
  • Ultra high dose rate (UHDR) radiotherapy, specifically conformal FLASH proton therapy, offers potential benefits by minimizing damage to healthy tissue while effectively targeting tumors.
  • Clinical application of conformal FLASH has faced challenges, particularly concerning the quality assurance of measuring dose rate (DR) and linear energy transfer (LET).
  • The study successfully validated these parameters, demonstrating strong agreement between experimental data and Monte Carlo simulations, confirming the efficacy of the UHDR treatment approach.
View Article and Find Full Text PDF

. In current clinical practice for quality assurance (QA), intensity modulated proton therapy (IMPT) fields are verified by measuring planar dose distributions at one or a few selected depths in a phantom. A QA device that measures full 3D dose distributions at high spatiotemporal resolution would be highly beneficial for existing as well as emerging proton therapy techniques such as FLASH radiotherapy.

View Article and Find Full Text PDF

Background: Position verification and motion monitoring are critical for safe and precise radiotherapy (RT). Existing approaches to these tasks based on visible light or x-ray are suboptimal either because they cannot penetrate obstructions to the patient's skin or introduce additional radiation exposure. The low-cost mmWave radar is an ideal solution for these tasks as it can monitor patient position and motion continuously throughout the treatment delivery.

View Article and Find Full Text PDF

Mevion's single-room HYPERSCAN proton therapy system employs a proton multileaf collimator called the adaptive aperture (AA), which collimates individual spots in the proton delivery as determined by the Treatment Planning System (TPS). The purpose of this study is to assess the dosimetric benefits of the AA, specifically in the dynamic aperture (DA) mode, and evaluate its impact on proton treatment plan quality as compared to a traditional pencil beam scanning (PBS) system (Varian ProBeam). The spot dose distributions with dynamic collimation (DA), a unique AA shape for each energy layer, and with static collimation (SA), a single AA collimation shape shared by all energy layers per field, were calculated and compared with the spot dose distribution of the Varian ProBeam proton therapy system.

View Article and Find Full Text PDF

Ultra-high dose rate (UHDR) radiotherapy (RT) or FLASH-RT can potentially reduce normal tissue toxicity. A small animal irradiator that can deliver FLASH-RT treatments similar to clinical RT treatments is needed for pre-clinical studies of FLASH-RT. We designed and simulated a novel small animal FLASH irradiator (SAFI) based on distributed x-ray source technology.

View Article and Find Full Text PDF

. Computed tomography (CT) to material property conversion dominates proton range uncertainty, impacting the quality of proton treatment planning. Physics-based and machine learning-based methods have been investigated to leverage dual-energy CT (DECT) to predict proton ranges.

View Article and Find Full Text PDF

. Proton pencil beam scanning (PBS) treatment fields needs to be verified before treatment deliveries to ensure patient safety. In current practice, treatment beam quality assurance (QA) is measured at a few selected depths using film or a 2D detector array, which is insensitive and time-consuming.

View Article and Find Full Text PDF

Background: Emerging multi-pixel X-ray source technology enables new designs for X-ray imaging systems. The power of multi-pixel X-ray sources with a fixed anode is limited by focal spot power density.

Purpose: The purpose of this study is to optimize the W-diamond target and predict its performance in multi-pixel X-ray sources.

View Article and Find Full Text PDF

Purpose: To present a proton computed tomography (pCT) reconstruction approach that models the integral depth dose (IDD) of the clinical scanning proton beam into beamlets. Using a multilayer ionization chamber (MLIC) as the imager, the proposed pCT system and the reconstruction approach can minimize extra ambient neutron dose and simplify the beamline design by eliminating an additional collimator to confine the proton beam.

Methods: Monte Carlo simulation was applied to digitally simulate the IDDs of the exiting proton beams detected by the MLIC.

View Article and Find Full Text PDF

Purpose: A tetrahedron beam (TB) X-ray system with a linear X-ray source array and a linear detector array positioned orthogonal to each other may overcome the X-ray scattering problem of traditional cone-beam X-ray systems. We developed a TB imaging benchtop system using a linear array X-ray source to demonstrate the principle and benefits of TB imaging.

Methods: A multi-pixel thermionic emission X-ray (MPTEX) source with 48 focal spots in 4-mm spacing was developed in-house.

View Article and Find Full Text PDF

Purpose: The objective of this study was to investigate the dosimetric impact of range uncertainty in a large cohort of patients receiving passive scatter proton therapy.

Methods: A cohort of 120 patients were reviewed in this study retrospectively, of which 61 were brain, 39 lung, and 20 prostate patients. Range uncertainties of ±3.

View Article and Find Full Text PDF

The presence of artificial implants complicates the delivery of proton therapy due to inaccurate characterization of both the implant and the surrounding tissues. In this work, we describe a method to characterize implant and human tissue mimicking materials in terms of relative stopping power (RSP) using a novel proton counting detector. Each proton is tracked by directly measuring the deposited energy along the proton track using a fast, pixelated spectral detector AdvaPIX-TPX3 (TPX3).

View Article and Find Full Text PDF

Purpose: Continuous monitoring of patient movement is crucial to administering safe radiation therapy (RT). Conventional optical approaches often cannot be used when the patient's surface is blocked by immobilization devices. Millimeter waves (mmWaves) are capable of penetrating nonconductive objects.

View Article and Find Full Text PDF

Proton neutron gamma-x detection (PNGXD) is a novel imaging concept being investigated for tumor localization during proton therapy that uses secondary neutron interactions with a gadolinium contrast agent (GDCA) to produce characteristic photons within the 40-200 keV energy region. The purpose of this study is to experimentally investigate the feasibility of implementing this procedure by performing experimental measurements on a passive double scattering proton treatment unit. Five experimental measurements were performed with varying concentrations and irradiation conditions.

View Article and Find Full Text PDF

Purpose: Uncertainty in proton range can be reduced by proton computed tomography (CT). A novel design of proton CT using a multiple-layer ionization chamber with two strip ionization chambers on the surface is proposed to simplify the imaging acquisition and reconstruction.

Methods: Two strip ionization chambers facing the proton source were coupled into a multiple-layer ionization chamber (MLIC).

View Article and Find Full Text PDF

Purpose: The purpose of this work was to develop and validate a multileaf collimator (MLC) model for a TrueBeam™ linac using Geant4 Monte Carlo (MC) simulation kit.

Methods: A Geant4 application was developed to accurately represent TrueBeam™ linac. Pre-computed phase-space file in a plane just above the jaws was used for radiation transport.

View Article and Find Full Text PDF

Distributed x-ray sources enable novel designs of x-ray imaging systems. However, the x-ray power of such sources is limited by the focal spot power density of the fixed anode. To further improve x-ray output, we have designed and evaluated a diamond-W transmission target for multi-pixel x-ray sources.

View Article and Find Full Text PDF

Purpose: To evaluate the feasibility of image-guided adaptive proton therapy (IGAPT) with a mobile helical-CT without rails.

Method: CT images were acquired with a 32-slice mobile CT (mCT) scanning through a 6 degree-of-freedom robotic couch rotated isocentrically 90 degrees from an initial setup position. The relationship between the treatment isocenter and the mCT imaging isocenter was established by a stereotactic reference frame attached to the treatment couch.

View Article and Find Full Text PDF

Deep periocular cancers can be difficult to plan and treat with radiation, given the difficulties in apposing bolus to skin, and the proximity to the retina and other optic structures. We sought to compare the combination of electrons and orthovoltage therapy (OBE) with existing modalities for these lesions. Four cases-a retro-orbital melanoma (Case 1) and basal cell carcinomas, extending across the eyelid (Case 2) or along the medial canthus (Cases 3-4)-were selected for comparison.

View Article and Find Full Text PDF

Purpose: Clinical treatment planning systems for proton therapy currently do not calculate monitor units (MUs) in passive scatter proton therapy due to the complexity of the beam delivery systems. Physical phantom measurements are commonly employed to determine the field-specific output factors (OFs) but are often subject to limited machine time, measurement uncertainties and intensive labor. In this study, a machine learning-based approach was developed to predict output (cGy/MU) and derive MUs, incorporating the dependencies on gantry angle and field size for a single-room proton therapy system.

View Article and Find Full Text PDF

Purpose: Insufficient image contrast associated with radiation therapy daily setup x-ray images could negatively affect accurate patient treatment setup. We developed a method to perform automatic and user-independent contrast enhancement on 2D kilo voltage (kV) and megavoltage (MV) x-ray images. The goal was to provide tissue contrast optimized for each treatment site in order to support accurate patient daily treatment setup and the subsequent offline review.

View Article and Find Full Text PDF

Multiple pixel x-ray sources facilitate new designs of imaging modalities that may result in faster imaging speed, improved image quality, and more compact geometry. We are developing a high-brightness multiple-pixel thermionic emission x-ray (MPTEX) source based on oxide-coated cathodes. Oxide cathodes have high emission efficiency and, thereby, produce high emission current density at low temperature when compared to traditional tungsten filaments.

View Article and Find Full Text PDF

The purpose of this study is to describe the comprehensive commissioning process and initial clinical experience of the Mevion S250 proton therapy system, a gantry-mounted, single-room proton therapy platform clinically implemented in the S. Lee Kling Proton Therapy Center at Barnes-Jewish Hospital in St. Louis, MO, USA.

View Article and Find Full Text PDF

The purpose of this study was to introduce a three-field monoisocentric inverse treatment planning method without half-beam blocks for breast cancer radiation treatments. Three-field monoisocentric breast treatment planning with half-beam blocks limits the tangential field length to 20 cm. A dual-isocenter approach accommodates patients with larger breasts, but prolongs treatment time and may introduce dose uncertainty at the matching plane due to daily setup variations.

View Article and Find Full Text PDF