Publications by authors named "Tieyan Zhang"

As an emerging two-dimensional material, graphene offers an alternative material platform for exploring new metamaterial phenomena and device functionalities. In this work, we examine diffuse scattering properties in graphene metamaterials. We take periodic graphene nanoribbons as a representative example and show that diffuse reflection in graphene metamaterials as dominated by diffraction orders is restricted to wavelengths less than that of first-order Rayleigh anomaly, and is enhanced by plasmonic resonances in graphene nanoribbons, as similar to metamaterials made of noble metals.

View Article and Find Full Text PDF

Narrowband resonance plays an important role in many optical applications, especially for the development of wavelength-selective properties and enhanced light-matter interaction. In this paper, we demonstrate metal-insulator-metal (MIM) waveguide gratings, which exhibit guided-mode resonance (GMR) with reduced bandwidth in mid-infrared absorption and thermal emission. Our fabricated MIM waveguide grating consists of a copper substrate, a lossless ZnSe film, and a top gold stripe grating.

View Article and Find Full Text PDF

Metamaterials of metal-insulator-metal structures represent effective ways in manipulating light absorbance for photodetection, sensing, and energy harvesting etc. Most of the time, specular reflection has been used in characterizing resonances of metamaterials without considering diffuse scattering from their periodic subwavelength units. In this paper, we investigate diffuse reflection in metasurfaces made of periodic metallic disks in the mid-infrared region.

View Article and Find Full Text PDF

The area covered by Chinese-style solar greenhouses (CSGs) has been increasing rapidly. However, only a few pyranometers, which are fundamental for solar radiation sensing, have been installed inside CSGs. The lack of solar radiation sensing will bring negative effects in greenhouse cultivation such as over irrigation or under irrigation, and unnecessary power consumption.

View Article and Find Full Text PDF

Vibrational absorption spectroscopy presents an effective and direct way for molecular detection and identification. In this paper, we propose and demonstrate a simple strategy and structure to amplify molecular detection sensitivity via the example of a monolayer octadecanethiol (ODT). The underlying amplification mechanism operates on both the enhanced surface field in and the coupled-oscillators' energy transfer between the molecules and the cavity underneath.

View Article and Find Full Text PDF

In this paper, a novel heuristic dynamic programming (HDP) iteration algorithm is proposed to solve the optimal tracking control problem for a class of nonlinear discrete-time systems with time delays. The novel algorithm contains state updating, control policy iteration, and performance index iteration. To get the optimal states, the states are also updated.

View Article and Find Full Text PDF