Publications by authors named "Tieyan Si"

The treatment outcomes of oral medications against ulcerative colitis (UC) have long been restricted by low drug accumulation in the colitis mucosa and subsequent unsatisfactory therapeutic efficacy. Here, high-performance pluronic F127 (P127)-modified gold shell (AuS)-polymeric core nanotherapeutics loading with curcumin (CUR) is constructed. Under near-infrared irradiation, the resultant P127-AuS@CURs generate transient mild photothermia (TMP; ≈42 °C, 10 min), which facilitates their penetration through colonic mucus and favors multiple cellular processes, including cell internalization, lysosomal escape, and controlled CUR release.

View Article and Find Full Text PDF

It is a long-standing challenge to accomplish bionic microrobot that acts in a similar way of white blood cell, chasing bacteria in complex environment. Without an effective external control field, most swarming microrobots systems are usually unable to perform directional movement and redirect their motion to capture the target. Here we report the predatory-prey dynamics of self-propelled clusters of Janus micromotors.

View Article and Find Full Text PDF
Article Synopsis
  • The speed and direction of bubble-propelled micromotors depend on factors like bubble lifetime, formation frequency, and the presence of stabilizing agents.
  • A biodegradable Janus micromotor, driven by hydrogen bubbles from the reaction of hydrochloric acid and magnesium, was tested under different concentrations of acid and the surfactant Triton X-100.
  • The micromotor can reverse its movement based on surfactant availability, moving backward when surfactant-free due to bubble cavitation and forward when surfactant is present, highlighting the need to study micromotor behavior in various environments.
View Article and Find Full Text PDF

Utilizing bottom-up controllable molecular assembly, the bio-inspired polyelectrolyte multilayer conical nanoswimmers with gold-nanoshell functionalization on different segments are presented to achieve the optimal upstream propulsion performance. The experimental investigation reveals that the presence of the gold nanoshells on the big openings of the nanoswimmers could not only bestow efficient directional propulsion but could also minimize the impact from the external flow. The gold nanoshells at the big openings of nanoswimmers facilitate the acoustically powered propulsion against a flow velocity of up to 2.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers have observed how glucose-fueled colloidal motors change direction in response to glucose gradients, showing positive chemotaxis, which is the movement towards a chemical attractant.
  • These colloidal motors, designed with a unique flask-like shape, are powered by enzymatic reactions that create a glucose gradient, allowing for controlled movement based on their orientation.
  • The study suggests that these motors could be developed into sophisticated delivery systems that respond to specific chemical signals, similar to how living organisms navigate their environments.
View Article and Find Full Text PDF

Rod-shaped active micro/nano-particles, such as bacterial and bipolar metallic micro/nano-motors, demonstrate novel collective phenomena far from the equilibrium state compared to passive particles. We apply a simulation approach --dissipative particle dynamics (DPD)-- to explore the collectively ordered states of self-propelled rods (SPRs). The SPRs are confined in a finite circular zone and repel each other when two rods touch each other.

View Article and Find Full Text PDF

Photothermal therapy (PTT) based on photothermal effect of the gold nanostructures, has been widely applied as a noninvasive therapy approach in cancer treatment. However, bare Au nanoparticles are not stable enough during the irradiation process, and cannot harvest sufficient energy to kill tumor cells. To improve this, we have fabricated a stable bioagent by loading gold nanorods (AuNRs) into multicompartment mesoporous silica nanoparticles (MMSNs) for the photothermal therapy.

View Article and Find Full Text PDF

We report an ultrasound-driven gold-nanoshell-functionalized polymer multilayer tubular nanoswimmer that can photomechanically perforate the membrane of a cancer cell by assistance of near-infrared (NIR) light. The nanoswimmers were constructed by a template-assisted layer-by-layer technique and subsequent functionalization of Au nanoshells inside the big opening. The nanoswimmers exhibit efficient and controllable movement toward target cells through the manipulation of the acoustic field.

View Article and Find Full Text PDF

We report the bubble dragged microrocket consisting of functionalized multilayer polymer covered asymmetrically by platinum nanoparticles. The microrocket is pushed back during bubble growth over a small step and dragged forward over a big step during bubble explosion. Each bubble explosion induced a shock wave of gas which propagates in water at ultrafast speed.

View Article and Find Full Text PDF

Hydrogel capsules are a potential candidate for drug delivery and an interesting alternative to polyelectrolyte multilayer capsules which are under investigation since 20 years. Recently introduced polyelectrolyte complex capsules produced by spraying are non-biodegradable and not biocompatible, which limits their practical application, while biodegradable alginate capsules require complex coaxial electrospray ionization jetting. In this work, biodegradable alginate capsules cross-linked by calcium are successfully produced by hydrodynamic electrospray ionization jetting with the assistance of low frequency ultrasound.

View Article and Find Full Text PDF
Article Synopsis
  • Hydrogels are being developed as a method for targeted drug delivery, designed to release medication without side effects and to navigate through bodily tissues effectively.
  • By using a technique that combines hydrodynamic electrospray ionization jetting with ultrasound, researchers have found a way to create tiny mucoadhesive particles that can easily pass through the gastrointestinal barrier.
  • These particles can carry biocompatible magnetite nanoparticles and move in a specific direction when a rotating magnetic field is applied, making them a potential breakthrough for precise drug delivery systems.
View Article and Find Full Text PDF

We report a hollow dumbbell-shaped manganese dioxide (MnO) colloidal kayaker capable of converting a pair of breathing oxygen bubbles into self-propelled movement. The bubble pair generated by catalytic decomposition of hydrogen peroxide fuel grew either synchronously or asynchronously, driving the colloidal kayaker to move along a fluctuating circle. The synchronous or asynchronous breathing mode of bubble pair is governed by the asymmetric catalytic sites of the colloidal kayakers.

View Article and Find Full Text PDF
Article Synopsis
  • Hydrodynamic electrospray ionization was used to create and analyze calcium cross-linked alginate microparticles, exploring various factors like electrospray modes, distances, and concentrations.
  • Among the different modes, the conejet mode produced the smallest particles with the most consistent results across various parameters.
  • The study found that for concentrations of 2.5% or higher, particle size was unaffected by spraying distance, while variations in aspect ratios were influenced by the mode and distance, particularly at lower concentrations.
View Article and Find Full Text PDF

A growing bacterial colony is a dense suspension of an increasing number of cells capable of individual as well as collective motion. After inoculating Pseudomonas aeruginosa over an annular area on an agar plate, we observe the growth and spread of the bacterial population, and model the process by considering the physical effects that account for the features observed. Over a course of 10-12 hours, the majority of bacteria migrate to and accumulate at the edges.

View Article and Find Full Text PDF

We report a dynamic self-organization of self-propelled peanut-shaped hematite motors from non-equilibrium driving forces where the propulsion can be triggered by blue light. They result in one-dimensional, active colloid ribbons with a positive phototactic characteristic. The motion of colloid motors is ascribed to the diffusion-osmotic flow in a chemical gradient by the photocatalytic decomposition of hydrogen peroxide fuel.

View Article and Find Full Text PDF

Self-propelled micro/nanomotors possess tremendous exciting promise in diverse fields. We describe an asymmetric, fuel-free and near-infrared light-powered torpedo micromotor, which is constructed by using a porous membrane-assisted layer-by-layer sol-gel method to form silica multilayer inside the pores, following by the deposition of gold nanoparticles on one end of the pores. In the absence of chemical fuels, the high propulsion of microtorpedoes under illumination of near-infrared light is owing to the photo-thermal effect of gold clusters, generating a thermal gradient inside the microtorpedoes.

View Article and Find Full Text PDF

As artificial active colloids, micro-/nanomotors (MNMs) can convert energy from the environment into mechanical motion in different fluids, showing potential applications in diverse fields such as targeted drug delivery and photothermal therapy. However, chemical fuels for typical catalytic MNMs, e.g.

View Article and Find Full Text PDF

Many species of bacteria can spread over a moist surface via a particular form of collective motion known as "surface swarming". This form of motility is typically studied by inoculating bacteria on a gel formed by 0.4-1.

View Article and Find Full Text PDF

We describe fuel-free, near-infrared (NIR)-driven Janus mesoporous silica nanoparticle motors (JMSNMs) with diameters of 50, 80, and 120 nm. The Janus structure of the JMSNMs is generated by vacuum sputtering of a 10 nm Au layer on one side of the MSNMs. Upon exposure to an NIR laser, a localized photothermal effect on the Au half-shells results in the formation of thermal gradients across the JMSNMs; thus, the generated self-thermophoresis can actively drive the nanomotors to move at an ultrafast speed, for instance, up to 950 body lengths/s for 50 nm JMSNMs under an NIR laser power of 70.

View Article and Find Full Text PDF

The combination of bottom-up controllable self-assembly technique with bioinspired design has opened new horizons in the development of self-propelled synthetic micro/nanomotors. Over the past five years, a significant advances toward the construction of bioinspired self-propelled micro/nanomotors has been witnessed based on the controlled self-assembly technique. Such a strategy permits the realization of autonomously synthetic motors with engineering features, such as sizes, shapes, composition, propulsion mechanism, and function.

View Article and Find Full Text PDF

This communication sheds light on the production method and motion patterns of autonomous moving bubble propelled two dimensional micro-plate motors. The plate motors are produced by the well-known layer-by-layer self-assembly process in combination with micro-contact printing. The motion analysis covers instances of oscillating bubble development on one or more nucleation sites, which influence the motion speed and direction.

View Article and Find Full Text PDF

A gold nanoshell-functionalized polymer multilayer nanorocket performs self-propulsion upon the irradiation with NIR light in the absence of chemical fuel. Theoretical simulations reveal that the NIR light-triggered self-thermophoresis drives the propulsion of the nanorocket. The nanorocket also displays -efficient NIR light-triggered propulsion in -biofluids and thus holds considerable promise for various potential biomedical applications.

View Article and Find Full Text PDF

Seeking safe and effective water-soluble drug carriers is of great significance in nanomedicine. To achieve this goal, we present a novel drug delivery system based on biointerfacing hollow polymeric microcapsules for effectively encapsulating water-soluble antitumor drug and gold nanorod (GNR) functionalization for triggered release of therapeutic drugs on-demand using low power near-infrared (NIR) radiation. The surface of polymeric microcapsules is covered with fluidic lipid bilayers to decrease the permeability of the wall of polymeric capsules.

View Article and Find Full Text PDF

Photothermal therapy based on gold nanostructures has been widely investigated as a state-of-the-art noninvasive therapy approach. Because single nanoparticles cannot harvest sufficient energy, self-assemblies of small plasmonic particles into large aggregates are required for enhanced photothermal performance. Self-assembled gold nanorods in lipid bilayer-modified microcapsules are shown to localize at tumor sites, generate vapor bubbles under near-infrared light exposure, and subsequently damage tumor tissues.

View Article and Find Full Text PDF

In this study we investigated the effect of laser-induced membrane fusion of polyelectrolyte multilayer (PEM) based microcapsules bearing surface-attached gold nanoparticles (AuNPs) in aqueous media. We demonstrate that a dense coating of the capsules with AuNPs leads to enhanced light absorption, causing an increase of local temperature. This enhances the migration of polyelectrolytes within the PEMs and thus enables a complete fusion of two or more capsules.

View Article and Find Full Text PDF