Single-molecule studies have provided a wealth of insight into the photophysics of conjugated polymers in the solid and desolvated state. Desolvating conjugated chains, ..
View Article and Find Full Text PDFSemiconducting polymers doped with a minority fraction of energy transfer acceptors feature a sensitive coupling between chain conformation and fluorescence emission, that can be harnessed for advanced solution-based molecular sensing and diagnostics. While it is known that chain length strongly affects chain conformation, and its response to external cues, the effects of chain length on the emission patterns in chromophore-doped conjugated polymers remains incompletely understood. In this paper, we explore chain-length dependent emission in two different acceptor-doped polyfluorenes.
View Article and Find Full Text PDFGlasses formed from nano- and microparticles form a fascinating testing ground to explore and understand the origins of vitrification. For atomic and molecular glasses, a wide range of fragilities have been observed; in colloidal systems, these effects can be emulated by adjusting the particle softness. The colloidal glass transition can range from a superexponential, fragile increase in viscosity with increasing density for hard spheres to a strong, Arrhenius-like transition for compressible particles.
View Article and Find Full Text PDFColloidal gels are a prototypical example of a heterogeneous network solid whose complex properties are governed by thermally activated dynamics. In this Letter we experimentally establish the connection between the intermittent dynamics of individual particles and their local connectivity. We interpret our experiments with a model that describes single-particle dynamics based on highly cooperative thermal debonding.
View Article and Find Full Text PDF