Publications by authors named "Tierrafria V"

Cryptic prophages (CPs) are elements of bacterial genomes acquired from bacteriophage that infect the host cell and ultimately become stably integrated within the host genome. While some proteins encoded by CPs can modulate host phenotypes, the potential for Transcription Factors (TFs) encoded by CPs to impact host physiology by regulating host genes has not been thoroughly investigated. In this work, we report hundreds of host genes regulated by DicC, a DNA-binding TF encoded in the Qin prophage of .

View Article and Find Full Text PDF

The DNA binding of most Transcription Factors (TFs) has not been comprehensively mapped, and few have models that can quantitatively predict binding affinity. We report the global mapping of DNA binding for 139 TFs using ChIP-Seq. We used these data to train BoltzNet, a novel neural network that predicts TF binding energy from DNA sequence.

View Article and Find Full Text PDF

Post-genomic implementations have expanded the experimental strategies to identify elements involved in the regulation of transcription initiation. Here, we present for the first time a detailed analysis of the sources of knowledge supporting the collection of transcriptional regulatory interactions (RIs) of K-12. An RI groups the transcription factor, its effect (positive or negative) and the regulated target, a promoter, a gene or transcription unit.

View Article and Find Full Text PDF

EcoCyc is a bioinformatics database available online at EcoCyc.org that describes the genome and the biochemical machinery of K-12 MG1655. The long-term goal of the project is to describe the complete molecular catalog of the cell, as well as the functions of each of its molecular parts, to facilitate a system-level understanding of .

View Article and Find Full Text PDF

Post-genomic implementations have expanded the experimental strategies to identify elements involved in the regulation of transcription initiation. As new methodologies emerge, a natural step is to compare their results with those from established methodologies, such as the classic methods of molecular biology used to characterize transcription factor binding sites, promoters, or transcription units. In the case of K-12, the best-studied microorganism, for the last 30 years we have continuously gathered such knowledge from original scientific publications, and have organized it in two databases, RegulonDB and EcoCyc.

View Article and Find Full Text PDF

Genomics has set the basis for a variety of methodologies that produce high-throughput datasets identifying the different players that define gene regulation, particularly regulation of transcription initiation and operon organization. These datasets are available in public repositories, such as the Gene Expression Omnibus, or ArrayExpress. However, accessing and navigating such a wealth of data is not straightforward.

View Article and Find Full Text PDF

In free-living bacteria, the ability to regulate gene expression is at the core of adapting and interacting with the environment. For these systems to have a logic, a signal must trigger a genetic change that helps the cell to deal with what implies its presence in the environment; briefly, the response is expected to include a feedback to the signal. Thus, it makes sense to think of genetic sensory mechanisms of gene regulation.

View Article and Find Full Text PDF

The number of published papers in biomedical research makes it rather impossible for a researcher to keep up to date. This is where manually curated databases contribute facilitating the access to knowledge. However, the structure required by databases strongly limits the type of valuable information that can be incorporated.

View Article and Find Full Text PDF

The EcoCyc model-organism database collects and summarizes experimental data for K-12. EcoCyc is regularly updated by the manual curation of individual database entries, such as genes, proteins, and metabolic pathways, and by the programmatic addition of results from select high-throughput analyses. Updates to the Pathway Tools software that supports EcoCyc and to the web interface that enables user access have continuously improved its usability and expanded its functionality.

View Article and Find Full Text PDF

Background: The ability to express the same meaning in different ways is a well-known property of natural language. This amazing property is the source of major difficulties in natural language processing. Given the constant increase in published literature, its curation and information extraction would strongly benefit from efficient automatic processes, for which corpora of sentences evaluated by experts are a valuable resource.

View Article and Find Full Text PDF

The labdane-related diterpenoids (LRDs) are a large group of natural products with a broad range of biological activities. They are synthesized through two consecutive reactions catalyzed by class II and I diterpene synthases (DTSs). The structural complexity of LRDs mainly depends on the catalytic activity of class I DTSs, which catalyze the formation of bicyclic to pentacyclic LRDs, using as a substrate the catalytic product of class II DTSs.

View Article and Find Full Text PDF

Motivation: A major component in increasing our understanding of the biology of an organism is the mapping of its genotypic potential into its phenotypic expression profiles. This mapping is executed by the machinery of gene regulation, which is essentially studied by changes in growth conditions. Although many efforts have been made to systematize the annotation of experimental conditions in microbiology, the available annotations are not based on a consistent and controlled vocabulary, making difficult the identification of biologically meaningful comparisons of knowledge derived from different experiments or laboratories.

View Article and Find Full Text PDF

Background: Our understanding of the regulation of gene expression has benefited from the availability of high-throughput technologies that interrogate the whole genome for the binding of specific transcription factors and gene expression profiles. In the case of widely used model organisms, such as Escherichia coli K-12, the new knowledge gained from these approaches needs to be integrated with the legacy of accumulated knowledge from genetic and molecular biology experiments conducted in the pre-genomic era in order to attain the deepest level of understanding possible based on the available data.

Results: In this paper, we describe an expansion of RegulonDB, the database containing the rich legacy of decades of classic molecular biology experiments supporting what we know about gene regulation and operon organization in E.

View Article and Find Full Text PDF

In the genus Streptomyces, carbon utilization is of significant importance for the expression of genes involved in morphological differentiation and antibiotic production. However, there is little information about the mechanism involved in these effects. In the present work, it was found that glucose exerted a suppressive effect on the Streptomyces coelicolor actinorhodin (Act) and undecylprodigiosin (Red) production, as well as in its morphological differentiation.

View Article and Find Full Text PDF

Although the specific function of SCO2127 remains elusive, it has been assumed that this hypothetical protein plays an important role in carbon catabolite regulation and therefore in antibiotic biosynthesis in Streptomyces coelicolor. To shed light on the functional relationship of SCO2127 to the biosynthesis of actinorhodin, a detailed analysis of the proteins differentially produced between the strain M145 and the Δsco2127 mutant of S. coelicolor was performed.

View Article and Find Full Text PDF

Background: In the genus Streptomyces, one of the most remarkable control mechanisms of physiological processes is carbon catabolite repression (CCR). This mechanism regulates the expression of genes involved in the uptake and utilization of alternative carbon sources. CCR also affects the synthesis of secondary metabolites and morphological differentiation.

View Article and Find Full Text PDF

Ferrioxamines-mediated iron acquisition by Streptomyces coelicolor A3(2) has recently received increased attention. In addition to the biological role of desferrioxamines (dFOs) as hydroxamate siderophores, and the pharmaceutical application of dFO-B as an iron-chelator, the ferrioxamines have been shown to mediate microbial interactions. In S.

View Article and Find Full Text PDF