Mucopolysaccharidosis (MPS) IIIB is a lysosomal storage disease with complex CNS and somatic pathology due to a deficiency in α-N-acetylglucosaminidase (NAGLU). Using global metabolic profiling by mass spectrometry targeting 361 metabolites, this study detected significant decreases in 225 and increases in six metabolites in serum samples from 7-month-old MPS IIIB mice, compared to wild-type (WT) mice. The metabolic disturbances involve virtually all major pathways of amino acid, peptide (58/102), carbohydrate (18/28), lipid (111/139), nucleotide (12/24), energy (2/9), vitamin and cofactor (11/16), and xenobiotic (11/28) metabolism.
View Article and Find Full Text PDFThe reversibility of neuropathic lysosomal storage diseases, including MPS IIIA, is a major goal in therapeutic development, due to typically late diagnoses and a large population of untreated patients. We used self-complementary adeno-associated virus (scAAV) serotype 9 vector expressing human N-sulfoglucosamine sulfohydrolase (SGSH) to test the efficacy of treatment at later stages of the disease. We treated MPS IIIA mice at 1, 2, 3, 6, and 9 months of age with an intravenous injection of scAAV9-U1a-hSGSH vector, leading to restoration of SGSH activity and reduction of glycosaminoglycans (GAG) throughout the central nervous system (CNS) and somatic tissues at a dose of 5E12 vg/kg.
View Article and Find Full Text PDFNo treatment is currently available for mucopolysaccharidosis (MPS) IIIB, a neuropathic lysosomal storage disease caused by autosomal recessive defect in α-N-acetylglucosaminidase (NAGLU). In anticipation of a clinical gene therapy treatment for MPS IIIB in humans, we tested the rAAV9-CMV-hNAGLU vector administration to cynomolgus monkeys (n=8) at 1E13 vg/kg or 2E13 vg/kg via intravenous injection. No adverse events or detectable toxicity occurred over a 6-month period.
View Article and Find Full Text PDFMucopolysaccharidosis (MPS) IIIB is a devastating neuropathic lysosomal storage disease with complex pathology. This study identifies molecular signatures in peripheral blood that may be relevant to MPS IIIB pathogenesis using a mouse model. Genome-wide gene expression microarrays on pooled RNAs showed dysregulation of 2,802 transcripts in blood from MPS IIIB mice, reflecting pathological complexity of MPS IIIB, encompassing virtually all previously reported and as yet unexplored disease aspects.
View Article and Find Full Text PDF