Publications by authors named "Tierney T"

Non-invasive imaging of the human spinal cord is a vital tool for understanding the mechanisms underlying its functions in both healthy and pathological conditions. However, non-invasive imaging presents a significant methodological challenge because the spinal cord is difficult to access with conventional neurophysiological approaches, due to its proximity to other organs and muscles, as well as the physiological movements caused by respiration, heartbeats, and cerebrospinal fluid (CSF) flow. Here, we discuss the present state and future directions of spinal cord imaging, with a focus on the estimation of current flow through magnetic field measurements.

View Article and Find Full Text PDF

A suite of diagnostics used to assess impurity content and dynamics has been updated, upgraded, and installed on the Pegasus-III Experiment. Typical plasma parameters during local helicity injection start-up are τshot ∼ 10 ms, ne ∼ 1 × 1019 m-3, and Te ∼ 50 eV. The deployed diagnostics are compatible with this modest temperature and density regime and provide species identification, source localization, and estimation of radiation losses.

View Article and Find Full Text PDF

Background: The spinal cord and its interactions with the brain are fundamental for movement control and somatosensation. However, brain and spinal electrophysiology in humans have largely been treated as distinct enterprises, in part due to the relative inaccessibility of the spinal cord. Consequently, there is a dearth of knowledge on human spinal electrophysiology, including the multiple pathologies that affect the spinal cord as well as the brain.

View Article and Find Full Text PDF

Multipole expansions have been used extensively in the Magnetoencephalography (MEG) literature for mitigating environmental interference and modelling brain signal. However, their application to Optically Pumped Magnetometer (OPM) data is challenging due to the wide variety of existing OPM sensor and array designs. We therefore explore how such multipole models can be adapted to provide stable models of brain signal and interference across OPM systems.

View Article and Find Full Text PDF

When planning for epilepsy surgery, multiple potential sites for resection may be identified through anatomical imaging. Magnetoencephalography (MEG) using optically pumped sensors (OP-MEG) is a non-invasive functional neuroimaging technique which could be used to help identify the epileptogenic zone from these candidate regions. Here we test the utility of a-priori information from anatomical imaging for differentiating potential lesion sites with OP-MEG.

View Article and Find Full Text PDF

Most neuroimaging techniques require the participant to remain still for reliable recordings to be made. Optically pumped magnetometer (OPM) based magnetoencephalography (OP-MEG) however, is a neuroimaging technique which can be used to measure neural signals during large participant movement (approximately 1 m) within a magnetically shielded room (MSR) (Boto et al., 2018; Seymour et al.

View Article and Find Full Text PDF

The ability to collect high-quality neuroimaging data during ambulatory participant movement would enable a wealth of neuroscientific paradigms. Wearable magnetoencephalography (MEG) based on optically pumped magnetometers (OPMs) has the potential to allow participant movement during a scan. However, the strict zero magnetic field requirement of OPMs means that systems must be operated inside a magnetically shielded room (MSR) and also require active shielding using electromagnetic coils to cancel residual fields and field changes (due to external sources and sensor movements) that would otherwise prevent accurate neuronal source reconstructions.

View Article and Find Full Text PDF

Background: Public and patient involvement aims to improve research quality, relevance, and appropriateness. Despite an increasing evidence base on the influence of public involvement in health research, the role of involvement in methodology research (i.e.

View Article and Find Full Text PDF

Magneto- and electroencephalography (MEG/EEG) are important techniques for the diagnosis and pre-surgical evaluation of epilepsy. Yet, in current cryogen-based MEG systems the sensors are offset from the scalp, which limits the signal-to-noise ratio (SNR) and thereby the sensitivity to activity from deep structures such as the hippocampus. This effect is amplified in children, for whom adult-sized fixed-helmet systems are typically too big.

View Article and Find Full Text PDF

Objectives: A rapid review is a form of evidence synthesis considered a resource-efficient alternative to the conventional systematic review. Despite a dramatic rise in the number of rapid reviews commissioned and conducted in response to the coronavirus disease 2019 pandemic, published evidence on the optimal methods of planning, doing, and sharing the results of these reviews is lacking. The Priority III study aimed to identify the top 10 unanswered questions on rapid review methodology to be addressed by future research.

View Article and Find Full Text PDF
Article Synopsis
  • Magnetically Shielded Rooms (MSRs) are used to block external magnetic fields, crucial for precise measurements in techniques like magnetoencephalography (MEG).
  • Optically Pumped Magnetometers (OPMs) enable wearable MEG technology, but they require strict magnetic shielding to function properly.
  • The new lightweight MSR design greatly reduces weight and size, while also introducing a 'window coil' system to optimize shielding, making it more cost-effective and easier to install for broad adoption of OPM-MEG.
View Article and Find Full Text PDF

In this study we explore the interference rejection and spatial sampling properties of multi-axis Optically Pumped Magnetometer (OPM) data. We use both vector spherical harmonics and eigenspectra to quantify how well an array can separate neuronal signal from environmental interference while adequately sampling the entire cortex. We found that triaxial OPMs have superb noise rejection properties allowing for very high orders of interference (L=6) to be accounted for while minimally affecting the neural space (2dB attenuation for a 60-sensor triaxial system).

View Article and Find Full Text PDF

Background: Healthcare professionals' empathetic behaviors have been known to lead to higher satisfaction levels and produce better health outcomes for patients. However, empathy could decrease over time especially during training and clinical practice. This study explored factors that contributed to the development of empathy in the healthcare setting.

View Article and Find Full Text PDF

Objective: Magnetic resonance-guided focused ultrasound (MRgFUS) is an incisionless procedure capable of thermoablation through the focus of multiple acoustic beams. Although MRgFUS is currently approved for the treatment of tremor in adults, its safety and feasibility profile for intracranial lesions in the pediatric and young adult population remains unknown.

Methods: The long-term outcomes of a prospective single-center, single-arm trial of MRgFUS at Nicklaus Children's Hospital in Miami, Florida, are presented.

View Article and Find Full Text PDF

One of the primary technical challenges facing magnetoencephalography (MEG) is that the magnitude of neuromagnetic fields is several orders of magnitude lower than interfering signals. Recently, a new type of sensor has been developed - the optically pumped magnetometer (OPM). These sensors can be placed directly on the scalp and move with the head during participant movement, making them wearable.

View Article and Find Full Text PDF
Article Synopsis
  • - The importance of rapid reviews in health care decision-making has increased since the COVID-19 pandemic, offering quicker, albeit potentially less rigorous, evidence synthesis compared to systematic reviews.
  • - A modified James Lind Alliance Priority Setting Partnership will be conducted to identify the top 10 research questions regarding the planning, execution, and sharing of rapid reviews, incorporating input from diverse stakeholders such as patients, clinicians, and policymakers.
  • - The process involves conducting online surveys to gather perceptions on research uncertainties, categorizing responses to create a long list of questions, and holding a consensus workshop to finalize the priorities, which aims to reduce research waste and improve the effectiveness of rapid reviews.
View Article and Find Full Text PDF

Optically pumped magnetometer-based magnetoencephalography (OP-MEG) can be used to measure neuromagnetic fields while participants move in a magnetically shielded room. Head movements in previous OP-MEG studies have been up to 20 cm translation and ∼30° rotation in a sitting position. While this represents a step-change over stationary MEG systems, naturalistic head movement is likely to exceed these limits, particularly when participants are standing up.

View Article and Find Full Text PDF

Objective: To define clinical empathy from the perspective of healthcare workers and patients from a multicultural setting.

Design: Grounded theory approach using focus group discussions.

Setting: A health cluster in Singapore consisting of an acute hospital, a community hospital, ambulatory care teams, a medical school and a nursing school.

View Article and Find Full Text PDF

Beamforming is one of the most commonly used source reconstruction methods for magneto- and electroencephalography (M/EEG). One underlying assumption, however, is that distant sources are uncorrelated and here we tested whether this is an appropriate model for the human hippocampal data. We revised the Empirical Bayesian Beamfomer (EBB) to accommodate specific a-priori correlated source models.

View Article and Find Full Text PDF

Here we propose that much of the magnetic interference observed when using optically pumped magnetometers for MEG experiments can be modeled as a spatially homogeneous magnetic field. We show that this approximation reduces sensor level variance and substantially improves statistical power. This model does not require knowledge of the underlying neuroanatomy nor the sensor positions.

View Article and Find Full Text PDF

Background: Optically pumped magnetometers (OPMs) have made moving, wearable magnetoencephalography (MEG) possible. The OPMs typically used for MEG require a low background magnetic field to operate, which is achieved using both passive and active magnetic shielding. However, the background magnetic field is never truly zero Tesla, and so the field at each of the OPMs changes as the participant moves.

View Article and Find Full Text PDF

Several new technologies have emerged promising new Magnetoencephalography (MEG) systems in which the sensors can be placed close to the scalp. One such technology, Optically Pumped MEG (OP-MEG) allows for a scalp mounted system that provides measurements within millimetres of the scalp surface. A question that arises in developing on-scalp systems is: how many sensors are necessary to achieve adequate performance/spatial discrimination? There are many factors to consider in answering this question such as the signal to noise ratio (SNR), the locations and depths of the sources, density of spatial sampling, sensor gain errors (due to interference, subject movement, cross-talk, etc.

View Article and Find Full Text PDF

Traditional magnetoencephalographic (MEG) brain imaging scanners consist of a rigid sensor array surrounding the head; this means that they are maximally sensitive to superficial brain structures. New technology based on optical pumping means that we can now consider more flexible and creative sensor placement. Here we explored the magnetic fields generated by a model of the human hippocampus not only across scalp but also at the roof of the mouth.

View Article and Find Full Text PDF

Purpose: To compare rates of persistent postoperative pain (PPP) after lumbar spine surgery-commonly known as Failed Back Surgery Syndrome-and healthcare costs for instrumented lumbar spinal fusion versus decompression/discectomy.

Methods: The UK population-based healthcare data from the Hospital Episode Statistics (HES) database from NHS Digital and the Clinical Practice Research Datalink (CPRD) were queried to identify patients with PPP following lumbar spinal surgery. Rates of PPP were calculated by type of surgery (instrumented and non-instrumented).

View Article and Find Full Text PDF

We demonstrate the first use of Optically Pumped Magnetoencephalography (OP-MEG) in an epilepsy patient with unrestricted head movement. Current clinical MEG uses a traditional SQUID system, where sensors are cryogenically cooled and housed in a helmet in which the patient's head is fixed. Here, we use a different type of sensor (OPM), which operates at room temperature and can be placed directly on the patient's scalp, permitting free head movement.

View Article and Find Full Text PDF