Publications by authors named "Tieqiao Wu"

The purpose of this study was to investigate the effect of ultrasound combined with microbbules (SonoVue) on the potency of methylprednisolone in attenuating the renal injury induced by adriamycin in rats. Animal model was established by two intravenous injections of 4 mg/kg adriamycin with a 2-week interval in rats. One week later, the adriamycin injected rats were randomly divided into 7 groups, receiving various treatments daily for 2 weeks.

View Article and Find Full Text PDF

Purpose Of Review: Diabetic kidney disease (DKD) is a leading cause of mortality and morbidity in diabetes. This review aims to discuss the major features of DKD, to identify the difficult barrier encountered in developing a therapeutic strategy and to provide a potentially superior novel approach to retard DKD.

Recent Findings: Renal inflammation and fibrosis are prominent features of DKD.

View Article and Find Full Text PDF

Targeting cell division autoantigen 1 (CDA1) is postulated to attenuate the profibrotic actions of transforming growth factor-β in diabetic nephropathy. This study has identified a regulatory protein for CDA1 and has then used genetic and pharmacological approaches to test in vivo whether strategies to target this pathway would lead to reduced renal injury. A novel protein, named CDA1BP1 (CDA1 binding protein 1), was identified as critical in regulating the profibrotic activity of CDA1.

View Article and Find Full Text PDF

Signaling via the receptor of advanced glycation end products (RAGE)-though complex and not fully elucidated in the setting of diabetes-is considered a key injurious pathway in the development of diabetic nephropathy (DN). We report here that RAGE deletion resulted in increased expression of fibrotic markers (collagen I and IV, fibronectin) and the inflammatory marker MCP-1 in primary mouse mesangial cells (MCs) and in kidney cortex. RNA sequencing analysis in MCs from RAGE and wild-type mice confirmed these observations.

View Article and Find Full Text PDF

Diabetes is a negative risk factor for aortic aneurysm, but the underlying explanation for this phenomenon is unknown. We have previously demonstrated that cell division autoantigen 1 (CDA1), which enhances transforming growth factor-β signaling, is upregulated in diabetes. We hypothesized that CDA1 plays a key role in conferring the protective effect of diabetes against aortic aneurysms.

View Article and Find Full Text PDF

Cell division autoantigen 1 (CDA1) enhances TGF-β signaling in renal and vascular cells, and renal expression of CDA1 is elevated in animal models of diabetes. In this study, we investigated the genetic deletion of Tspyl2, the gene encoding CDA1, in C57BL6 and ApoE knockout mice. The increased renal expression of TGF-β1, TGF-β type I and II receptors, and phosphorylated Smad3 associated with diabetes in wild-type mice was attenuated in diabetic CDA1 knockout mice.

View Article and Find Full Text PDF

Cell division autoantigen 1 (CDA1) modulates cell proliferation and transforming growth factor-β (TGF-β) signaling in a number of cellular systems; here we found that its levels were elevated in the kidneys of two animal models of diabetic renal disease. The localization of CDA1 to tubular cells and podocytes in human kidney sections was similar to that seen in the rodent models. CDA1 small interfering RNA knockdown markedly attenuated, whereas its overexpression increased TGF-β signaling, modulating the expression of TGF-β, TGF-β receptors, connective tissue growth factor, collagen types I, III, IV, and fibronectin genes in HK-2 cells.

View Article and Find Full Text PDF

We previously reported that overexpression of cell division autoantigen 1 (CDA1) in HeLa cells arrests cell growth and inhibits DNA synthesis at S-phase. Here we show that CDA1-induced arrest of cell growth is accompanied by increases in protein and mRNA levels of the cyclin-dependent kinase (Cdk) inhibitor protein, p21(Waf1/Cip1) (p21). Both p21 induction and cell growth arrest are reversed when CDA1 expression is inhibited.

View Article and Find Full Text PDF

MSP8 is a recently identified merozoite surface protein that shares similar structural features with the leading vaccine candidate MSP1. Both proteins contain two C-terminal epidermal growth factor (EGF)-like domains, a glycosylphosphatidylinositol (GPI) anchor attachment sequence and undergo proteolytic processing. By double recombination, we have disrupted the MSP8 gene in P.

View Article and Find Full Text PDF

Objective: To evaluate the relationship between the psychological impediment of the patients with somatization disorder (SD) and domestic violence, and to enhance peoples recognition of this kind of patients' harmful action to others so as to attach more importance to the patients and to the improvement of mental health service of the community.

Methods: Questionnaire scoring was conducted among the wives of the SD group and the control group concerning domestic violence. It was also conducted in the SD group, the control group and the wives of the two groups concerning defense mechanism.

View Article and Find Full Text PDF

Using bioinformatics analyses of the unfinished malaria genome sequence, we have identified a novel protein of Plasmodium falciparum that contains two epidermal growth factor (EGF)-like domains near the C-terminus of the protein. The sequence contains a single open reading frame of 1572bp with the potential to encode a protein of 524 residues containing hydrophobic regions at the extreme N- and C-termini which appear to represent signal peptide and glycosylphosphatidylinositol (GPI)-attachment sites, respectively. RT-PCR analysis has confirmed that the novel gene is transcribed in asexual stages of P.

View Article and Find Full Text PDF