Random lasers exhibit many exotic properties, including chaotic behavior, light localization, broad angular emission, and cost-effective fabrication, which enable them to attract both scientific and industrial interests. However, before the realization of their potential applications, several challenges still remain including the underlying mechanism and controllability due to their inherent multidirectional and chaotic fluctuations. Through more than two decades of collaborative efforts, the discovery of Anderson localization in random lasers provides a plausible route to resolve the difficulties, which enables one to tailor the number of lasing modes and stabilize the emission spectra.
View Article and Find Full Text PDFACS Appl Mater Interfaces
October 2020
Distinguishing a multitude of optical labels is crucial to improving the spatial and temporal resolution of bioimaging. However, current multicolor imaging approaches are limited by the spectral overlap of employed fluorophores. We here discern different instances of a single optical label type through their emission intensity.
View Article and Find Full Text PDFThe many distinct advantages of random lasers focused efforts on developing a breakthrough from optical pumping to electrical pumping. However, progress in these is limited due to high optical loss and low gain. In this work, we demonstrate an electrically pumped quantum dot (QD) random laser with visible emission based on a previously unexplored paradigm named coherent Förster resonance energy transfer (CFRET).
View Article and Find Full Text PDFWe here describe a novel type of long-wavelength radiation detector that measures illumination intensity at room temperature through mechanical transduction. Compared to semiconductor-based bolometers, our nanomechanical detector exhibits low measurement noise and is inherently transparent and flexible. The presented solid-state device is based on a 2D-material film that acts as radiation absorber and detector of mechanical strain at the substrate-absorber interface.
View Article and Find Full Text PDFACS Appl Mater Interfaces
February 2020
The emergence of self-healing devices in recent years has drawn a great amount of attention in both academics and industry. Self-healed devices can autonomically restore a rupture as unexpected destruction occurs, which can efficiently prolong the life span of the devices; hence, they have an enhanced durability and decreased replacement cost. As a result, integration of wearable devices with self-healed electronics has become an indispensable issue in smart wearable devices.
View Article and Find Full Text PDFWe demonstrate a highly sensitive, low-cost, environmental-friendly pressure sensor derived from a wool-based pressure sensor with wide pressure sensing range using wool bricks embedded with a Ag nano-wires. The easy fabrication and light weight allow portable and wearable device applications. Wth the integration of a light-emitting diode possessing multi-wavelength emission, we illustrate a hybrid multi-functional LED-integrated pressure sensor that is able to convert different applied pressures to light emission with different wavelengths.
View Article and Find Full Text PDFVisible blind near-infrared (NIR) photodetection is essential when it comes to weapons used by military personnel, narrow band detectors used in space navigation systems, medicine, and research studies. The technological field of filterless visible blind, NIR omnidirectional photodetection and wearability is at a preliminary stage. Here, we present a filterless and lightweight design for a visible blind and wearable NIR photodetector capable of harvesting light omnidirectionally.
View Article and Find Full Text PDFIn recent years, flexible magnetoelectronics has attracted a great attention for its intriguing functionalities and potential applications, such as healthcare, memory, soft robots, navigation, and touchless human-machine interaction systems. Here, we provide the first attempt to demonstrate a new type of magneto-piezoresistance device, which possesses an ultrahigh sensitivity with several orders of resistance change under an external magnetic field (100 mT). In our device, Fe-Ni alloy powders are embedded in the silver nanowire-coated micropyramid polydimethylsiloxane films.
View Article and Find Full Text PDFNanomaterials (Basel)
April 2017
Most thin-film techniques require a multiple vacuum process, and cannot produce high-coverage continuous thin films with the thickness of a few nanometers on rough surfaces. We present a new "paradigm shift" non-vacuum process to deposit high-quality, ultra-thin, single-crystal layers of coalesced sulfide nanoparticles (NPs) with controllable thickness down to a few nanometers, based on thermal decomposition. This provides high-coverage, homogeneous thickness, and large-area deposition over a rough surface, with little material loss or liquid chemical waste, and deposition rates of 10 nm/min.
View Article and Find Full Text PDFGreen LEDs do not show the same level of performance as their blue and red cousins, greatly hindering the solid-state lighting development, which is the so-called "green gap". In this work, nano-void photonic crystals (NVPCs) were fabricated to embed within the GaN/InGaN green LEDs by using epitaxial lateral overgrowth (ELO) and nano-sphere lithography techniques. The NVPCs act as an efficient scattering back-reflector to outcouple the guided and downward photons, which not only boost the light extraction efficiency of LEDs with an enhancement of 78% but also collimate the view angle of LEDs from 131.
View Article and Find Full Text PDF