Optogenetics combines genetics and biophotonics to enable noninvasive control of biological processes with high spatiotemporal precision. When engineered into protein machineries that govern the cellular information flow as depicted in the central dogma, multiple genetically encoded non-opsin photosensory modules have been harnessed to modulate gene transcription, DNA or RNA modifications, DNA recombination, and genome engineering by utilizing photons emitting in the wide range of 200-1000 nm. We present herein generally applicable modular strategies for optogenetic engineering and highlight latest advances in the broad applications of opsin-free optogenetics to program transcriptional outputs and precisely manipulate the mammalian genome, epigenome, and epitranscriptome.
View Article and Find Full Text PDFNatural RNA modifications diversify the structures and functions of existing nucleic acid building blocks. Geranyl is one of the most hydrophobic groups recently identified in bacterial tRNAs. Selenouridine synthase (SelU, also called mnmH) is an enzyme with a dual activity which catalyzes selenation and geranylation in tRNAs containing 2-thiouridine using selenophosphate or geranyl-pyrophosphate as cofactors.
View Article and Find Full Text PDFA genetically encoded caffeine-operated synthetic module (COSMO) is introduced herein as a robust chemically induced dimerization (CID) system. COSMO enables chemogenetic manipulation of biological processes by caffeine and its metabolites, as well as caffeinated beverages, including coffee, tea, soda, and energy drinks. This CID tool, evolved from an anti-caffeine nanobody via cell-based high-throughput screening, permits caffeine-inducible gating of calcium channels, tumor killing via necroptosis, growth factors-independent activation of tyrosine receptor kinase signaling, and enhancement of nanobody-mediated antigen recognition for the severe acute respiratory distress coronavirus 2 (SARS-CoV-2) spike protein.
View Article and Find Full Text PDFThe small GTPase KRAS, which is frequently mutated in human cancers, must be localized to the plasma membrane (PM) for biological activity. We recently showed that the KRAS C-terminal membrane anchor exhibits exquisite lipid-binding specificity for select species of phosphatidylserine (PtdSer). We, therefore, investigated whether reducing PM PtdSer content is sufficient to abrogate KRAS oncogenesis.
View Article and Find Full Text PDFBiochem Biophys Res Commun
August 2015
Diffusion can enhance Förster resonance energy transfer (FRET) when donors or acceptors diffuse distances that are similar to the distances separating them during the donor's excited state lifetime. Lanthanide donors remain in the excited state for milliseconds, which makes them useful for time-resolved FRET applications but also allows time for diffusion to enhance energy transfer. Here we show that diffusion dramatically enhances FRET between membrane proteins labeled with lanthanide donors.
View Article and Find Full Text PDFBioluminescence resonance energy transfer (BRET) is often used to study association of membrane proteins, and in particular oligomerization of G protein-coupled receptors (GPCRs). Oligomerization of class A GPCRs is controversial, in part because the methods used to study this question are not completely understood. Here we reconsider oligomerization of the class A β2 adrenergic receptor (β2AR), and reevaluate BRET titration as a method to study membrane protein association.
View Article and Find Full Text PDFG protein-coupled receptors (GPCRs) transduce many important physiological signals and are targets for a large fraction of therapeutic drugs. Members of the largest family of GPCRs (family A) are thought to self-associate as dimers and higher-order oligomers, although the significance of such quaternary structures for signaling or receptor trafficking is known for only a few examples. One outstanding question is the physical stability of family A oligomers in cell membranes.
View Article and Find Full Text PDFThe molecular mechanisms underlying the transport from the Golgi to the cell surface of G protein-coupled receptors remain poorly elucidated. Here we determined the role of Rab26, a Ras-like small GTPase involved in vesicle-mediated secretion, in the cell surface export of α(2)-adrenergic receptors. We found that transient expression of Rab26 mutants and siRNA-mediated depletion of Rab26 significantly attenuated the cell surface numbers of α(2A)-AR and α(2B)-AR, as well as ERK1/2 activation by α(2B)-AR.
View Article and Find Full Text PDFPeripheral and integral membrane proteins can be located in several different subcellular compartments, and it is often necessary to determine the location of such proteins or to track their movement in living cells. Image-based colocalization of labeled membrane proteins and compartment markers is frequently used for this purpose, but this method is limited in terms of throughput and resolution. Here we show that bioluminescence resonance energy transfer (BRET) between membrane proteins of interest and compartment-targeted BRET partners can report subcellular location and movement of membrane proteins in live cells.
View Article and Find Full Text PDFG protein-coupled receptors (GPCRs) self-associate as dimers or higher-order oligomers in living cells. The stability of associated GPCRs has not been extensively studied, but it is generally thought that these receptors move between the plasma membrane and intracellular compartments as intact dimers or oligomers. Here we show that β(2)-adrenergic receptors (β(2)ARs) that self-associate at the plasma membrane can dissociate during agonist-induced internalization.
View Article and Find Full Text PDFMany of the molecules that mediate G-protein signaling are thought to constitutively associate with each other in variably stable signaling complexes. Much of the evidence for signaling complexes has come from Förster resonance energy transfer and bioluminescence resonance energy transfer (BRET) studies. However, detection of constitutive protein association with these methods is hampered by nonspecific energy transfer that occurs when donor and acceptor molecules are in close proximity by chance.
View Article and Find Full Text PDFThe genome of the japonica subspecies of rice, an important cereal and model monocot, was sequenced and assembled by whole-genome shotgun sequencing. The assembled sequence covers 93% of the 420-megabase genome. Gene predictions on the assembled sequence suggest that the genome contains 32,000 to 50,000 genes.
View Article and Find Full Text PDF