Publications by authors named "Tien-Duc Pham"

Extensive removal of 2,4,5-trichlorophenoxyacetic acid (2,4,5-T) using titania (TiO) nanoparticles by adsorption and photocatalysis with a surface coating by cetyltrimethylammonium bromide (CTAB) is reported. The CTAB-coated TiO nanoparticles (CCTN) were characterized by FT-IR, zeta-potential measurements, and UV-vis diffuse reflectance spectroscopy (UV-vis-DRS). 2,4,5-T removal increased significantly after surface modification with CTAB compared with bare TiO nanoparticles.

View Article and Find Full Text PDF

Adsorption of essential amino acid, Tryptophan (Tryp) on synthesized gibbsite nanoparticles and their applications in eliminating of antibiotic ciprofloxacin (CFX) and bacteria Escherichia coli (E. coli) in aqueous solution. Nano-gibbsite which was successfully fabricated, was characterized by XRD, TEM-SAED, FT-IR, SEM-EDX and zeta potential measurements.

View Article and Find Full Text PDF

A simple paper-based chromatography coupling with nickel foam decorated Au nanodendrite (PP-AuND/NiF) was fabricated for simultaneous separation and surface-enhanced Raman scattering (SERS) detection of Rhodamine-6G (R6G) from a mixture of analytes. The three-dimensional porous nickel foam (NiF) was employed as a sampling diffusion platform, and AuND with a high surface active area beneficial for SERS efficiency was electro-deposited directly onto the NiF frame. The structure of AuND/NiF was characterized by X-ray diffraction and scanning electron microscopy.

View Article and Find Full Text PDF

Amikacin is an aminoglycoside antibiotic widely used to treat various bacterial infections in humans. However, elevated concentrations of amikacin can damage the cochlear nerve. Thus, accurate and rapid amikacin detection is crucial.

View Article and Find Full Text PDF

Uranium is considered as one of the most perilous radioactive contaminants in the aqueous environment. It has shown detrimental effects on both flora and fauna and because of its toxicities on human beings, therefore its exclusion from the aqueous environment is very essential. The utilization of metal-organic frameworks (MOFs) as an adsorbent for the removal of uranium from the aqueous environment could be a good approach.

View Article and Find Full Text PDF

Highly positively charged poly(vinyl benzyl trimethylammonium chloride) (PVBMA) was successfully synthesized with approximately 82% of yield. The PVBMA was characterized by the molecular weight (M ) of 343.45 g mol and the molecular weight distribution, (Đ) of 2.

View Article and Find Full Text PDF

A novel nanomaterial based on cationic surfactant-coated TiO nanoparticle (CCTN) was systematically fabricated in this work. Synthesized titania nanoparticles were thoroughly characterized by XRD, FT-IR, HR-TEM, TEM-EDX, SEM with EDX mapping, BET, and ζ potential measurements. The adsorption of cationic surfactant, cetyltrimethylammonium bromide (CTAB), on TiO was studied under various pH and ionic strength conditions.

View Article and Find Full Text PDF

A novel core-shell nanomaterial, ZnO@SiO, based on rice husk for antibiotic and bacteria removal, was successfully fabricated. The ZnO@SiO nanoparticles were characterized by X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDX), Fourier transform infrared (FTIR) spectroscopy, transmission electron microscopy (TEM), photoluminescence spectroscopy (PL), Brunauer-Emmett-Teller (BET) method, diffuse reflectance ultraviolet-vis (DR-UV-vis) spectroscopy, X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, and ζ-potential measurements. β-Lactam antibiotic amoxicillin (AMX) was removed using ZnO@SiO nanoparticles with an efficiency greater than 90%, while removal was higher than 91%.

View Article and Find Full Text PDF

The adsorption and transformation of tetracyclines (TCs) antibiotics, including oxytetracycline (OTC), chlortetracycline (CTC), and tetracycline (TC), on the sodium dodecyl sulfate (SDS) surfactant-modified α-AlO particles were comprehensively investigated in this study. The TCs adsorption was significantly enhanced by using the modified adsorbents compared with the use of the unmodified adsorbents. The experimental conditions were systematically optimized and found to be pH 4, NaCl 1 mM, the contact time of 180 min, and the adsorbent dosage of 25 mg.

View Article and Find Full Text PDF

The present study aims to investigate adsorption characteristics and mechanisms of Moringa (MO) seeds protein on nanosilica rice husk and their applications in removal of pharmaceutical residues including the fluoroquinolone antibiotic levofloxacin (LFX) and the nonsteroidal anti-inflammatory drug diclofenac (DCF) in aquatic environment. Molecular weight of MO protein was determined by gel-permeation chromatography (GPC) method while its amino acids were quantified by high performance liquid chromatography (HPLC). The number-(M) and weight-average molecular weights (M) of MO protein were 1.

View Article and Find Full Text PDF

A diblock copolymer (P(VBTAC/NaSS)--PAPTAC; P(VS)A) composed of amphoteric random copolymer, poly(vinylbenzyl trimethylammonium chloride--sodium -styrensunfonate) (P(VBTAC/NaSS); P(VS)) and cationic poly(3-(acrylamidopropyl) trimethylammonium chloride) (PAPTAC; A) block, and poly(acrylic acid) (PAAc) were prepared via a reversible addition-fragmentation chain transfer radical polymerization. Scrips V, S, and A represent VBTAC, NaSS, and PAPTAC blocks, respectively. Water-soluble polyion complex (PIC) vesicles were formed by mixing P(VS)A and PAAc in water under basic conditions through electrostatic interactions between the cationic PAPTAC block and PAA with the deprotonated pendant carboxylate anions.

View Article and Find Full Text PDF

This study aims to investigate the adsorption characteristics of cationic surfactant, cetyltrimethylamonium bromide (CTAB) onto negatively nanosilica rice husk surface and the application for antibiotic treatment in water environment. Adsorption of CTAB onto nanosilica increased with an increase of solution pH, due to an enhancement of the electrostatic attraction between cationic methylamomethylamonium groups and negatively charged nanosilica surface enhanced at higher pH. Adsorption of CTAB decreased with a decrease of ionic strength while a common intersection point (CIP) was observed for adsorption isotherm at different ionic strengths, suggesting that hydrophobic interactions between alkyl chains in CTAB molecules significantly induced adsorption and admicelles with bilayer formation were dominant than monolayer of hemimicelles.

View Article and Find Full Text PDF

Photocatalytic deg radation of environmental pollutants is being up to date for the treatment of contaminated water. In the present study, ZnO/CuO nanomaterials were successfully fabricated by a simple sol-gel method and investigate the photo-degradation of rhodamine B (RhB). The synthesized ZnO/CuO nanoparticles were characterized by X-ray diffraction (XRD), energy-dispersive spectroscopy (EDS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV-Vis diffuse reflectance spectroscopy (UV-Vis-DRS), thermal analysis (TGA), surface charge, and Fourier transform infrared spectroscopy (FTIR).

View Article and Find Full Text PDF

Effects of ionic strength on the adsorption of highly charged polycationic ((2-dimethylamino)ethyl methacrylate) methyl chloride quaternary salt (PTMA5M) individually as well as in a binary mixture with polyanionic acrylic acid (PAA) onto polystyrene sulfate latex (PSL) particles with negative charges were investigated by means of Brownian movement particle tracking and measurement of electrophoretic mobility. In addition, the adsorption mechanism was confirmed by Fourier transform infrared (FT-IR) and energy-dispersive X-ray (EDX) spectroscopic methods. The hydrodynamic thickness of the adsorbed polyelectrolyte layer (δ) and electrophoretic mobility (EPM) of particles as a function of concentration ratios of the two polyelectrolytes were measured to clarify the effect of negatively charged molecules on the structure of the positively charged adsorbed layer at various ionic strengths.

View Article and Find Full Text PDF

Arsenic intake can cause human health disorders to the lungs, urinary tract, kidney, liver, hyper-pigmentation, muscles, neurological and even cancer. Biochar is potent, economical and ecologically sound adsorbents for water purification. After surface modifications, adsorption capacity of biochar significantly increased due to high porosity and reactivity.

View Article and Find Full Text PDF

The different desorption concepts of the two polyelectrolytes PTMA5M and PTMC5M, which have similar molecular weights and differ in the charge density on the polystyrene sulfate latex (PSL) particles by 25 times, and with various charge densities in a long incubation, were systematically investigated based on hydrodynamic adsorbed layer thickness (δ) and electrophoretic mobility (EPM) under two ionic strengths in the present study. Herein, in the case of highly charged polyelectrolyte PTMA5M, desorption continued for 4 h and re-adsorbing proceeded after a longer incubation time higher than 4 h. Meanwhile, in the case of lowly charged polyelectrolyte PTMC5M, an adsorption-desorption equilibrium was suggested to take into account the unchanging of both δ and EPM.

View Article and Find Full Text PDF

In the present work, adsorption of anionic azo dye, new coccine (NCC) on silica and silica-gel in an aquatic environment was discovered. Effective conditions such as adsorption time, pH, the influence of dosage on NCC adsorption using strong polycation, poly-diallyl-dimethylammonium chloride (PDADMAC) modified silica (PMS) and PDADMAC modified silica-gel (PMSG) were systematically studied. The removal of NCC using PMS and PMSG were much higher than that using raw silica and silica-gel without PDADMAC in all pH ranges from 3 to 10.

View Article and Find Full Text PDF

The pandemic COVID-19 has severely impacted upon the world economy, devastating the tourism industry globally. This paper estimates the short-run economic impacts of the inbound tourism industry on the Australian economy during the pandemic. The analysis covers effects both at the macroeconomic as well as at the industry and occupation level, from direct contribution (using tourism satellite accounts) to economy-wide effects (using the computable general equilibrium modelling technique).

View Article and Find Full Text PDF

This work aims to synthesize a core-shell material of CeO@SiO based on rice husk as a novel hybridized adsorbent for antibiotic removal. The phase structures of CeO@SiO and CeO nanoparticles that were fabricated by a simple procedure were examined by X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDS), and Fourier transform infrared (FT-IR) spectroscopy, while their interfacial characterizations were performed by scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), the Brunauer-Emmett-Teller (BET) method, and ζ-potential measurements. The removal efficiency of the antibiotic amoxicillin (AMX) using CeO@SiO nanoparticles was much greater than that using SiO and CeO materials in solutions of different pH values.

View Article and Find Full Text PDF

The objective of the present study is to investigate removal of cationic dye, rhodamine B (RhB), in water environment using a high-performance absorbent based on metal oxide nanomaterials toward green chemistry. The adsorption of sodium dodecyl sulfate (SDS) onto synthesized alpha alumina (-AlO) material (0) at different ionic strengths under low pH was studied to fabricate a new adsorbent as SDS-modified -AlO material (1). The RhB removal using 1 was much higher than 0 under the same experimental conditions.

View Article and Find Full Text PDF

The present study aims to investigate the adsorption of synthesized poly(2-acrylamide-2-methylpropane sulfonic acid) (PAMPs) onto alumina nanoparticles and their application in the removal of ciprofloxacin (CFX) antibiotic from a water environment. The PAMPs were successfully synthesized and characterized by nuclear magnetic resonance and gel-permeation chromatography methods. The number- and weight-average molecular weights of PAMPs were 6.

View Article and Find Full Text PDF

The aim of the present study is to determine four anionic alkyl sulfate (AS) surfactants with different alkyl chains, namely, C8, C10, C12, and C14, in wastewater by CE with capacitively coupled contactless conductivity detection (CE-C D). The conditions effective for the separation of the four AS surfactants were systematically optimized and found to be in a Tris-His (50 mM/20 mM) BGE solution at a pH of 8.95, using a separation voltage of +15 kV, hydrodynamic injection by siphoning using a 20 cm injection height and an injection time of 20 s.

View Article and Find Full Text PDF

This study aims to investigate the adsorption behavior of a strong polyelectrolyte poly(styrenesulfonate) (PSS) onto alumina particles. Adsorption of PSS onto positively charged alumina surface increased with increasing ionic strength, indicating that non-electrostatic and electrostatic interaction controlled the adsorption. The removal of an emerging antibiotic ciprofloxacin (CFX) from water environment using PSS-modified alumina (PMA) was also studied.

View Article and Find Full Text PDF

In the present study, we investigated the removal of an emerging pesticide lindane from aqueous solution using synthesized aluminum hydroxide Al(OH) (bayerite) nanomaterials with surface modification by an anionic surfactant sodium dodecyl sulfate (SDS). The Al(OH) nanoparticles were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), Brunauer-Emmett-Teller (BET) and zeta potential. The lindane removal using SDS-modified nano-aluminum hydroxide nanoparticles (SMNAH) achieved removal of up to 93.

View Article and Find Full Text PDF

In this study, different pretreatment strategies of sugarcane bagasse prior to citric acid modification were investigated in terms of Pb adsorption capacity. Pretreatment strategies included the use of NaOH, HCl, and CHOH in various concentrations. In order to fundamentally understand how these pretreatment methods affect the modification of sugarcane bagasse by citric acid as well as the Pb adsorption capacity of sugarcane bagasse, three main components of sugarcane bagasse namely cellulose, hemicellulose, and lignin were isolated and esterified by citric acid under the same conditions.

View Article and Find Full Text PDF