Publications by authors named "Tieleman D"

In cardiomyocytes, the KCNQ1/KCNE1 channel complex mediates the slow delayed-rectifier current (IKs), pivotal during the repolarization phase of the ventricular action potential. Mutations in IKs cause long QT syndrome (LQTS), a syndrome with a prolonged QT interval on the ECG, which increases the risk of ventricular arrhythmia and sudden cardiac death. One potential therapeutical intervention for LQTS is based on targeting IKs channels to restore channel function and/or the physiological QT interval.

View Article and Find Full Text PDF

The inward rectifier potassium channel Kir2.1 (KCNJ2) is an important regulator of resting membrane potential in both excitable and non-excitable cells. The functions of Kir2.

View Article and Find Full Text PDF

We describe methods to analyze lipid distributions and curvature in membranes with complex lipid mixtures and embedded membrane proteins. We discuss issues involved in these analyses, available tools to calculate curvature preferences of lipids and proteins, and focus on tools developed in our group for visual analysis of lipid-protein interactions and the analysis of membrane curvature.

View Article and Find Full Text PDF

Membranes play essential roles in biological systems and are tremendously diverse in the topologies and chemical and elastic properties that define their functions. In many cases, a given membrane may display considerable heterogeneity, with localized clusters of lipids and proteins exhibiting distinct characteristics compared to adjoining regions. These lipid-protein assemblies can span nanometers to micrometers and are associated with cellular processes such as transport and signaling.

View Article and Find Full Text PDF

The SLC4 family of secondary bicarbonate transporters is responsible for the transport of HCO, CO, Cl, Na, K, NH, and H, which are necessary for regulation of pH and ion homeostasis. They are widely expressed in numerous tissues throughout the body and function in different cell types with different membrane properties. Potential lipid roles in SLC4 function have been reported in experimental studies, focusing mostly on two members of the family: AE1 (Cl/HCO exchanger) and NBCe1 (Na-COcotransporter).

View Article and Find Full Text PDF

pH-responsive nanoparticles are ideal vehicles for drug delivery and are widely used in cell imaging in targeted therapy of cancer, which usually has a weakly acidic microenvironment. In this work, we constructed a titratable molecular model for nanoparticles grafted with ligands of pH-sensitive carboxylic acids and investigated the interactions between the nanoparticles and the lipid bilayer in varying pH environments. We mainly examined the effect of the grafting density of the pH-sensitive ligands of the nanoparticles on the interactions of the nanoparticles with the lipid bilayer.

View Article and Find Full Text PDF

Nanodisc technology is increasingly being used in structural, biochemical and biophysical studies of membrane proteins. The computational approaches have revealed many important features of nanodisc assembly, structures and dynamics. Therefore, we reviewed the application of computational approaches, especially molecular modeling and molecular dyncamics (MD) simulations, to characterize nanodiscs, including the structural models, assembly and disassembly, protocols for modeling, structural properties and dynamics, and protein-lipid interactions in nanodiscs.

View Article and Find Full Text PDF

Antimicrobial peptides are a promising class of potential antibiotics that interact selectively with negatively charged lipid bilayers. This paper presents the structural characterization of the antimicrobial peptides myxinidin and WMR associated with bacterial membrane mimetic micelles and bicelles by NMR, CD spectroscopy, and molecular dynamics simulations. Both peptides adopt a different conformation in the lipidic environment than in aqueous solution.

View Article and Find Full Text PDF

Protein lipidations are vital co/post-translational modifications that tether lipid tails to specific protein amino acids, allowing them to anchor to biological membranes, switch their subcellular localization, and modulate association with other proteins. Such lipidations are thus crucial for multiple biological processes including signal transduction, protein trafficking, and membrane localization and are implicated in various diseases as well. Examples of lipid-anchored proteins include the Ras family of proteins that undergo farnesylation; actin and gelsolin that are myristoylated; phospholipase D that is palmitoylated; glycosylphosphatidylinositol-anchored proteins; and others.

View Article and Find Full Text PDF

Cholesterol plays a crucial role in biomembranes by regulating various properties, such as fluidity, rigidity, permeability, and organization of lipid bilayers. The latest version of the Martini model, Martini 3, offers significant improvements in interaction balance, molecular packing, and inclusion of new bead types and sizes. However, the release of the new model resulted in the need to reparameterize many core molecules, including cholesterol.

View Article and Find Full Text PDF

Unlabelled: The SLC4 family of secondary bicarbonate transporters is responsible for the transport of HCO -, CO , Cl , Na , K , NH and H necessary for regulation of pH and ion homeostasis. They are widely expressed in numerous tissues throughout the body and function in different cell types with different membrane properties. Potential lipid roles in SLC4 function have been reported in experimental studies, focusing mostly on two members of the family: AE1 (Cl /HCO exchanger) and NBCe1 (Na -CO cotransporter).

View Article and Find Full Text PDF

Voltage-gated potassium (K) channels are important regulators of cellular excitability and control action potential repolarization in the heart and brain. K channel mutations lead to disordered cellular excitability. Loss-of-function mutations, for example, result in membrane hyperexcitability, a characteristic of epilepsy and cardiac arrhythmias.

View Article and Find Full Text PDF

We describe a complete implementation of Martini 2 and Martini 3 in the OpenMM molecular dynamics software package. Martini is a widely used coarse-grained force field with applications in biomolecular simulation, materials, and broader areas of chemistry. It is implemented as a force field but makes extensive use of facilities unique to the GROMACS software, including virtual sites and bonded terms that are not commonly used in standard atomistic force fields.

View Article and Find Full Text PDF

A cationic leak current known as an "omega current" may arise from mutations of the first charged residue in the S4 of the voltage sensor domains of sodium and potassium voltage-gated channels. The voltage-sensing domains (VSDs) in these mutated channels act as pores allowing nonspecific passage of cations, such as Li, K, Cs, and guanidinium. Interestingly, no omega currents have been previously detected in the nonswapped voltage-gated potassium channels such as the human-ether-a-go-go-related (hERG1), hyperpolarization-activated cyclic nucleotide-gated, and ether-a-go-go channels.

View Article and Find Full Text PDF

Background: Genotype-positive patients who suffer from the cardiac channelopathy Long QT Syndrome (LQTS) may display a spectrum of clinical phenotypes, with often unknown causes. Therefore, there is a need to identify factors influencing disease severity to move towards an individualized clinical management of LQTS. One possible factor influencing the disease phenotype is the endocannabinoid system, which has emerged as a modulator of cardiovascular function.

View Article and Find Full Text PDF

Electrospray ionization (ESI) is essential for application of mass spectrometry in biological systems, as it prevents the analyte being split into fragments. However, due to lack of a clear understanding of the mechanism of ESI, the interpretation of mass spectra is often ambiguous. This is a particular challenge for complex biological systems.

View Article and Find Full Text PDF

Anion exchanger 1 (AE1, band 3) is a major membrane protein of red blood cells and plays a key role in acid-base homeostasis, urine acidification, red blood cell shape regulation, and removal of carbon dioxide during respiration. Though structures of the transmembrane domain (TMD) of three SLC4 transporters, including AE1, have been resolved previously in their outward-facing (OF) state, no mammalian SLC4 structure has been reported in the inward-facing (IF) conformation. Here we present the cryoEM structures of full-length bovine AE1 with its TMD captured in both IF and OF conformations.

View Article and Find Full Text PDF

Cholesterol is a major component of many lipid-based drug delivery systems, including cationic lipid nanoparticles. Despite its critical role in the drug release stage, the underlying molecular mechanism by which cholesterol assists in endosomal escape remains unclear. An efficient drug release from the endosome requires endosomal disruption.

View Article and Find Full Text PDF

Curvature is a fundamental property of biological membranes and has essential roles in cellular function. Bending of membranes can be induced by their lipid and protein compositions, as well as peripheral proteins, such as those that make up the cytoskeleton. An important aspect of membrane function is the grouping of lipid species into microdomains, or rafts, which serve as platforms for specific biochemical processes.

View Article and Find Full Text PDF

In the erythrocyte membrane, the interactions between glycophorin A (GPA) and Band 3 are associated strongly with the biological function of the membrane and several blood disorders. In this work, using coarse-grained molecular-dynamics simulations, we systematically investigate the effects of cholesterol and phosphatidylinositol-4,5-bisphosphate (PIP2) on the interactions of GPA with Band 3 in the model erythrocyte membranes. We examine the dynamics of the interactions of GPA with Band 3 in different lipid bilayers on the microsecond time scale and calculate the binding free energy between GPA and Band 3.

View Article and Find Full Text PDF

As the past century has been characterized by waves of viral pandemics, there is an ever-growing role for molecular simulation-based research. In this study, we utilize all-atom molecular dynamics to simulate an enterovirus-D68 capsid and examine the dependency of viral capsid dynamics and properties on AMBER and CHARMM force fields. Out of the six force fields studied, we note that CHARMM36m and CHARMM36 generate secondary structures that are most consistent with protein structural data and sample the largest conformational space.

View Article and Find Full Text PDF

SignificanceCholesterol is one of the main components found in plasma membranes and is involved in lipid-dependent signaling enabled by integral membrane proteins such as inwardly rectifying potassium (Kir) channels. Similar to other ion channels, most of the Kir channels are down-regulated by cholesterol. One of the very few notable exceptions is Kir3.

View Article and Find Full Text PDF

Molecular modeling of large biomolecular assemblies exemplifies a disruptive area holding both promises and contentions. Propelled by peta and exascale computing, several simulation methodologies have now matured into user-friendly tools that are successfully employed for modeling viruses, membranous nano-constructs, and key pieces of the genetic machinery. We present three unifying biophysical themes that emanate from some of the most recent multi-million atom simulation endeavors.

View Article and Find Full Text PDF

Deletion of phenylalanine 508 (F508del) in the cystic fibrosis transmembrane conductance regulator (CFTR) anion channel is the most common cause of cystic fibrosis. The F508 residue is located on nucleotide-binding domain 1 (NBD1) in contact with the cytosolic extensions of the transmembrane helices, in particular intracellular loop 4 (ICL4). To investigate how absence of F508 at this interface impacts the CFTR protein, we carried out a mutagenesis scan of ICL4 by introducing second-site mutations at 11 positions in cis with F508del.

View Article and Find Full Text PDF

Peripheral myelin protein 2 (P2) plays an important role in the stacking of the myelin membrane and lipid transport. Here we investigate the interactions between P2 and a model myelin membrane using molecular dynamics simulations, focusing on the effect of the L27D mutation and conformational changes in the α2-helix in the lid domain of P2. The L27D mutation weakens the binding of the lid domain of P2 on the membrane.

View Article and Find Full Text PDF