Entropy (Basel)
August 2023
In the realm of time series data analysis, information criteria constructed on the basis of likelihood functions serve as crucial instruments for determining the appropriate lag order. However, the intricate structure of random coefficient integer-valued time series models, which are founded on thinning operators, complicates the establishment of likelihood functions. Consequently, employing information criteria such as AIC and BIC for model selection becomes problematic.
View Article and Find Full Text PDFThis paper presents a first-order integer-valued autoregressive time series model featuring observation-driven parameters that may adhere to a particular random distribution. We derive the ergodicity of the model as well as the theoretical properties of point estimation, interval estimation, and parameter testing. The properties are verified through numerical simulations.
View Article and Find Full Text PDF