Rivers and streams contribute to global carbon cycling by decomposing immense quantities of terrestrial plant matter. However, decomposition rates are highly variable and large-scale patterns and drivers of this process remain poorly understood. Using a cellulose-based assay to reflect the primary constituent of plant detritus, we generated a predictive model (81% variance explained) for cellulose decomposition rates across 514 globally distributed streams.
View Article and Find Full Text PDFUrban streams are exposed to a variety of anthropogenic stressors. Freshwater salinization is a key stressor in these ecosystems that is predicted to be further exacerbated by climate change, which causes simultaneous changes in flow parameters, potentially resulting in non-additive effects on aquatic ecosystems. However, the effects of salinization and flow velocity on urban streams are still poorly understood as multiple-stressor experiments are often conducted at pristine rather than urban sites.
View Article and Find Full Text PDFPhilos Trans R Soc Lond B Biol Sci
December 2023
Resource exchanges in the form of invertebrate fluxes are a key component of aquatic-terrestrial habitat coupling, but this interface is susceptible to human activities, including the imposition of artificial light at night. To better understand the effects of spectral composition of light-emitting diodes (LEDs)-a technology that is rapidly supplanting other lighting types-on emergent aquatic insects and terrestrial insects, we experimentally added LED fixtures that emit different light spectra to the littoral zone and adjacent riparian habitat of a pond. We installed four replicate LED treatments of different wavelengths (410, 530 and 630 nm), neutral white (4000 k) and a dark control, and sampled invertebrates in both terrestrial and over-water littoral traps.
View Article and Find Full Text PDFAnthropogenic impacts and global changes have profound implications for natural ecosystems and may lead to their modification, degradation or collapse. Increases in the intensity of single stressors may create abrupt shifts in biotic responses (i.e.
View Article and Find Full Text PDFCycling of organic carbon in the ocean has the potential to mitigate or exacerbate global climate change, but major questions remain about the environmental controls on organic carbon flux in the coastal zone. Here, we used a field experiment distributed across 28° of latitude, and the entire range of 2 dominant kelp species in the northern hemisphere, to measure decomposition rates of kelp detritus on the seafloor in relation to local environmental factors. Detritus decomposition in both species were strongly related to ocean temperature and initial carbon content, with higher rates of biomass loss at lower latitudes with warmer temperatures.
View Article and Find Full Text PDFRunning waters contribute substantially to global carbon fluxes through decomposition of terrestrial plant litter by aquatic microorganisms and detritivores. Diversity of this litter may influence instream decomposition globally in ways that are not yet understood. We investigated latitudinal differences in decomposition of litter mixtures of low and high functional diversity in 40 streams on 6 continents and spanning 113° of latitude.
View Article and Find Full Text PDFThe outcomes of species interactions-such as those between predators and prey-increasingly depend on environmental conditions that are modified by human activities. Light is among the most fundamental environmental parameters, and humans have dramatically altered natural light regimes across much of the globe through the addition of artificial light at night (ALAN). The consequences for species interactions, communities and ecosystems are just beginning to be understood.
View Article and Find Full Text PDFMultiple anthropogenic drivers are changing ecosystems globally, with a disproportionate and intensifying impact on freshwater habitats. A major impact of urbanization are inputs from wastewater treatment plants (WWTPs). Initially designed to reduce eutrophication and improve water quality, WWTPs increasingly release a multitude of micropollutants (MPs; i.
View Article and Find Full Text PDFStreams are being subjected to physical, chemical, and biological stresses stemming from both natural and anthropogenic changes to the planet. In the face of limited time and resources, scientists, resource managers, and policy makers need ways to rank stressors and their impacts so that we can prioritize them from the most to least important (i.e.
View Article and Find Full Text PDFLeaf litter subsidies are important resources for aquatic consumers like tadpoles and snails, causing bottom-up effects on wetland ecosystems. Recent studies have shown that variation in litter nutritional quality can be as important as litter quantity in driving these bottom-up effects. Resource subsidies likely also have indirect and trait-mediated effects on predation and parasitism, but these potential effects remain largely unexplored.
View Article and Find Full Text PDFAccording to ecological stoichiometry (ES), the growth of a consumer with abundant resources should increase as body and resource stoichiometry become more similar. However, for organisms with complex life cycles involving distinct changes in biology, nutrient demands might change in response to ontogenetic changes in body stoichiometry. Tadpole growth and development has been found to be largely nitrogen (N) limited, as predicted for organisms developing N-rich tissues like muscle.
View Article and Find Full Text PDFAnimals mediate flows of elements and energy in ecosystems through processes such as nutrient sequestration in body tissues, and mineralization through excretion. For taxa with biphasic life cycles, the dramatic shifts in anatomy and physiology that occur during ontogeny are expected to be accompanied by changes in body and excreta stoichiometry, but remain little-explored, especially in vertebrates. Here we tested stoichiometric hypotheses related to the bodies and excreta of the wood frog (Lithobates sylvaticus) across life stages and during larval development.
View Article and Find Full Text PDFEcological stoichiometry (ES) uses elemental ratios and mass balance to explain organismal growth, an important parameter in ecological systems. In this study, we tested quantitative predictions of the ES "minimal model" for the growth rates of two tadpole species (wood frogs, Lithobates sylvaticus and American toads, Anaxyrus americanus), by manipulating light and the quality of a leaf litter mixture in a seminatural mesocosm experiment. We predicted that wood frogs, which consume leaf litter as a resource, would respond more strongly to leaf litter quality than toads, which forage on periphyton and algae.
View Article and Find Full Text PDFFor organisms that exhibit complex life cycles, resource conditions experienced by individuals before metamorphosis can strongly affect phenotypes later in life. Such resource-induced effects are known to arise from variation in resource quantity, yet little is known regarding effects stemming from variation in resource quality (e.g.
View Article and Find Full Text PDFExcessive nutrient loading is a major threat to aquatic ecosystems worldwide that leads to profound changes in aquatic biodiversity and biogeochemical processes. Systematic quantitative assessment of functional ecosystem measures for river networks is, however, lacking, especially at continental scales. Here, we narrow this gap by means of a pan-European field experiment on a fundamental ecosystem process--leaf-litter breakdown--in 100 streams across a greater than 1000-fold nutrient gradient.
View Article and Find Full Text PDFA central paradigm of immunology is clonal selection: lymphocytes displaying clonally distributed antigen receptors are generated and subsequently selected by antigen for growth or elimination. Here we show that in mice transgenic for anti-H-2K antibody genes, in which a homogeneous clone of developing B cells can be analyzed for the outcome of autoantigen encounter, surface immunoglobulin M/idiotype immature B cells binding to self-antigens in the bone marrow are induced to alter the specificity of their antigen receptors. Transgenic bone marrow B cells encountering membrane-bound K or K proteins modify their receptors by expressing the V(D)J recombinase activator genes and assembling endogenously encoded immunoglobulin light chain variable genes.
View Article and Find Full Text PDFSpatial scale is a critical consideration for understanding ecological patterns and controls of ecological processes, yet very little is known about how rates of fundamental ecosystem processes vary across spatial scales. We assessed litter decomposition in stream networks whose inherent hierarchical nature makes them a suitable model system to evaluate variation in decay rates across multiple spatial scales. Our hypotheses were (1) that increasing spatial extent adds significant variability at each hierarchical level, and (2) that stream size is an important source of variability among streams.
View Article and Find Full Text PDFPacific salmon (Oncorhynchus spp.) disturb sediments and fertilize streams with marine-derived nutrients during their annual spawning runs, leading researchers to classify these fish as ecosystem engineers and providers of resource subsidies. While these processes strongly influence the structure and function of salmon streams, the magnitude of salmon influence varies widely across studies.
View Article and Find Full Text PDFAlthough species commonly modify habitats and thereby influence ecosystem structure and function, the factors governing the ecological importance of these modifications are not well understood. Pacific salmon have repeatedly been shown to positively influence the abundance of benthic biota by annually transferring large quantities of nutrients from marine systems to the nutrient-poor freshwaters in which they spawn. Conversely, other studies have demonstrated that salmon can negatively influence the abundance of freshwater biota, an effect attributed to bioturbation during upstream migration and nest construction.
View Article and Find Full Text PDFA central paradigm of immunology is clonal selection: lymphocytes displaying clonally distributed antigen receptors are generated and subsequently selected by antigen for growth or elimination. Here we show that in mice transgenic for anti-H-2Kk,b antibody genes, in which a homogeneous clone of developing B cells can be analyzed for the outcome of autoantigen encounter, surface immunoglobulin M+/idiotype+ immature B cells binding to self-antigens in the bone marrow are induced to alter the specificity of their antigen receptors. Transgenic bone marrow B cells encountering membrane-bound Kb or Kk proteins modify their receptors by expressing the V(D)J recombinase activator genes and assembling endogenously encoded immunoglobulin light chain variable genes.
View Article and Find Full Text PDFJ Invest Dermatol
October 1990
Langerhans (LC) cells require incubation with protein antigen for several days before the cells effectively stimulate proliferation of cloned, H-2 restricted, antigen-specific T h cells. In contrast, splenic antigen-presenting cells are immediately effective. LC are immediately competent, however, if an immunogenic peptide rather than the intact protein is the immunogen, indicating that resident or unchallenged LC have the required class II MHC and can provide the signals necessary for T-cell proliferation but may lack the capacity to internalize or cleave protein antigens.
View Article and Find Full Text PDF