Dioscorea polystachya, named Chinese yam, is widely cultivated as a functional food and natural medicine in China. There is currently little information about the chemical characteristics of Dioscorea polystachya in different organs (tuber cortex and tuber flesh) and at various ages. In this study, an ultra-high-performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry (UPLC-QTOF/MS) was used to profile chemical compounds in Dioscorea polystachya.
View Article and Find Full Text PDFMetabolomics is an effective biotechnological tool that can be used to attain comprehensive information on metabolites. In this study, the profiles of metabolites produced by wheat seedlings in response to drought stress were investigated using an untargeted approach with ultra-performance liquid chromatography-mass spectrometry (UPLC-MS) to determine various physiological processes related to drought tolerance from the cross between drought-tolerant genotype (HX10) and drought-sensitive genotype (YN211). The current study results showed that under drought stress, HX10 exhibited higher growth indices than YN211.
View Article and Find Full Text PDFIn this study, the metabolite profiling of three different parts of Crocus sativus L. was measured by using ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-QTof-MS/MS). Multivariate statistical analysis was used to distinguish among the samples from different parts.
View Article and Find Full Text PDFBackground: Among CESA-like gene superfamily, the cellulose synthase-like D (CSLD) genes are most similar to cellulose synthase genes and have been reported to be involved in tip-growing cell and stem development. However, there has been no genome-wide characterization of this gene subfamily in cotton. We thus sought to analyze the evolution and functional characterization of CSLD proteins in cotton based on fully sequenced cotton genomes.
View Article and Find Full Text PDF