Publications by authors named "Tie Mei Shao"

Alzheimer's disease (AD), the most common cause of dementia, is a neurodegenerative disorder characterized by amyloid plaque accumulations, intracellular tangles and neuronal loss in certain brain regions. It has been shown that a disturbance of normal iron metabolism contributes to the pathophysiology of AD. However, the mechanism underlying abnormal iron load in the brain of AD patients is unclear.

View Article and Find Full Text PDF

Background/aims: Salvia miltiorrhiza (SM) contains four major aqueous active ingredients, which have been isolated, purified and identified as danshensu (DSS), salvianolic acid A (Sal-A), salvianolic acid B (Sal-B) and protocatechuic aldehyde (PAL), totally abbreviated as SABP. Although SM is often used to treat various cardiovascular diseases in traditional Chinese medicine, the efficacy and function of optimal compatibility ratio of SM's active ingredients (SABP) in the prevention and treatment of cardiovascular diseases remain uncertain. This study investigated antihypertensive effect and underlying mechanisms of SABP vs.

View Article and Find Full Text PDF

Abnormally increased levels of iron in the brain trigger cascade amplification in Alzheimer's disease patients, resulting in neuronal death. This study investigated whether components extracted from the Chinese herbs epimedium herb, milkvetch root and kudzuvine root could relieve the abnormal expression of iron metabolism-related protein in Alzheimer's disease patients. An APPswe /PS1ΔE9 double transgenic mouse model of Alzheimer's disease was used.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is a neurodegenerative brain disorder and the most common cause of dementia. New treatments for AD are required due to its increasing prevalence in aging populations. The present study evaluated the effects of the active components of , and on learning and memory impairment, β-amyloid (Aβ) reduction and brain iron load in an APP/PS1 transgenic mouse model of AD.

View Article and Find Full Text PDF

Background: Adventitial fibroblasts have been shown to play an important role in vascular remodeling and contribute to neointimal formation in vascular diseases. However, little is known about adventitial fibroblast subpopulations. This study explored the process of isolating rat thoracic aorta adventitial fibroblast subpopulations and characterized their properties following stimulation with angiotensin II (ANG II), a critical factor involved in cardiovascular diseases such as hypertension.

View Article and Find Full Text PDF

Alzheimer's disease (AD) as a neurodegenerative brain disorder is a devastating pathology leading to disastrous cognitive impairments and dementia, associated with major social and economic costs to society. Iron can catalyze damaging free radical reactions. With age, iron accumulates in brain frontal cortex regions and may contribute to the risk of AD.

View Article and Find Full Text PDF

Beta amyloid (Aβ)-induced oxidative stress and chronic inflammation in the brain are considered to be responsible for the pathogenesis of Alzheimer's disease (AD). Salidroside, the major active ingredient of Rhodiola crenulata, has been previously shown to have antioxidant and neuroprotective properties in vitro. The present study aimed to investigate the protective effects of salidroside on Aβ-induced cognitive impairment in vivo.

View Article and Find Full Text PDF

The study is to investigate the effect of angiotensin II (Ang II) and its receptor blockers on migration and endothelin-1 (ET-1) expression of rat vascular adventitial fibroblast subpopulations. Vascular adventitial fibroblasts were individually expanded by using cloning rings, and the effects of Ang II on the migration of adventitial fibroblast subpopulations were evaluated by Transwell. Fluorescence quantitative-PCR detected the expression of preproET-1 mRNA induced by Ang II, and its receptor antagonists losartan and PD-123319.

View Article and Find Full Text PDF