Recently, the application of biosensors in food safety assessment has gained considerable research attention. Nevertheless, the evaluation of biosensors' sensitivity, accuracy, and efficiency is still ongoing. The advent of machine learning has enhanced the application of biosensors in food security assessment, yielding improved results.
View Article and Find Full Text PDFFood safety is one of the greatest public health challenges. Developing ultrasensitive detection methods for analytes at ultra-trace levels is, therefore, essential. In recent years, the bio-barcode assay (BCA) has emerged as an effective ultrasensitive detection strategy that is based on the indirect amplification of various DNA probes.
View Article and Find Full Text PDFNano-biosensors are of great significance for the analysis and detection of important biological targets. Surprisingly, the CRISPR-Cas12a system not only provides us with excellent gene editing capabilities, it also plays an important role in biosensing due to its high base resolution and high levels of sensitivity. However, most CRISPR-Cas12a-based sensors are limited by their recognition and output modes, are therefore only utilized for the detection of nucleic acids using fluorescence as an output signal.
View Article and Find Full Text PDFEffective and real-time detection of lactate (LA) content in human sweat has attracted considerable attention from researchers. In this work, a novel electrochemical paper-based analysis device (ePAD) was developed for the non-invasive detection of LA in sweat. The electrocatalytic properties of AuNP/Cu-TCPP(Fe) hybrid nanosheets, which were prepared by an optimised synthetic method, were studied by CV and EIS electrochemical methods for the first time and the working electrode can be fabricated using a drip coating method.
View Article and Find Full Text PDFFatigue causes deleterious effects to physical and mental health of human being and may cause loss of lives. Therefore, the adverse effects of fatigue on individuals and the society are massive. With the ever-increasing frequency of overtraining among modern military and sports personnel, timely, portable and accurate fatigue diagnosis is essential to avoid fatigue-induced accidents.
View Article and Find Full Text PDFIt is extremely necessary to establish a rapid and high-throughput method to detect mycotoxins in food, because grains and cereals are greatly vulnerable to mycotoxins before and after harvest. In this study, we developed a portable aptasensor based on streptavidin magnetic microspheres (MMPs) and hybridization chain reaction (HCR) to simultaneously detect T-2 toxin and zearalenone (ZEN) in corn and oat flour. The MMPs compete with the aptamer for binding, which releases more H0 and triggers HCR with the H1 intermediate modified using 6-FAM and BHQ-1 and the unmodified H2.
View Article and Find Full Text PDFA fluorescent biosensor strategy was developed in combination with immunomagnetic separation for rapid and sensitive detection of staphylococcal enterotoxin B (SEB). Magnetic nanoparticles (MNPs) modified with aptamer of SEB could capture the SEB. Then the gold nanoparticles (AuNPs) fluorescent probe was added and a "sandwich structure" was formed between AuNPs, SEB and MNPs.
View Article and Find Full Text PDFCurrently, most matrices developed for matrix-assisted laser desorption/ionization mass spectrometry (MALDI-TOF MS) for small-molecule detection are only suitable for the positive or negative ion mode and not the dual-ion mode, except for carbon-based nanomaterials. The lone-pair electrons on the N atom in poly n-vinylcarbazole (PVK) can serve as a Lewis base with strong electron-donation effects, which is favorable for negative ion mode detection. The surface of single-layer graphene oxide (SLGO) contains many oxygen atoms in carboxyl and hydroxyl groups that act as Lewis acids and thereby provides favorable protonation sites for positive ion mode detection.
View Article and Find Full Text PDFClustered regularly interspaced short palindromic repeats (CRISPR)/Cas systems exhibit significant potential in developing biosensing technology due to their collateral cleavage capabilities. Herein, we introduced the collateral cleavage activity of CRISPR/Cas14a to activate DNA hydrogel for ultrasensitive detection of the myocardial infarction biomarker creatine kinase MB (CK-MB). In this strategy, the designed CRISPR/Cas14a system can be activated by introducing complementary DNA (cDNA) derived from competitive dissociation and exponential amplification (EXPAR), which is positively correlated with creatine kinase isoenzyme (CK-MB) concentration.
View Article and Find Full Text PDFTraditional matrices for matrix-assisted laser desorption/ionization mass spectrometry (MALDI-TOF MS) are usually crystalline small molecules. The heterogeneous co-crystallization of the analyte and the matrix creates a sweet spot effect and reduces point-to-point reproducibility. In this study, an amorphous poly--vinylcarbazole polymer (PVK) was studied as a novel matrix for MALDI-TOF MS to detect various low molecular weight compounds (LMWCs) in the negative ion mode.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
October 2022
We designed and synthesised a magnetic adsorbent (FeO@Si-OH@CS-Glu) combining chitosan-silanol groups with glutaraldehyde as a cross-linking agent, which has improved physicochemical properties and can be used to remove multiple heavy metals and bacteria from polluted water. The adsorbent was characterised with SEM, XRD, FTIR, BET, VSM, and zeta potential. Under optimum conditions, the adsorption efficiencies of FeO@Si-OH@CS-Glu for Cr, As, Hg, and Se were as high as 90.
View Article and Find Full Text PDFFumonisin (FB) is a common mycotoxin in corn, wheat, oats, and their related products. FB1 is the most predominant among fumonisins and is responsible for severe food contamination that may have deleterious effects on public health. Therefore, the demand for achieving sensitive detection of FB1 is becoming more and more pressing.
View Article and Find Full Text PDFThe efficient capture of multi-pollutant residues in food is vital for food safety monitoring. In this study, in-situ-fabricated magnetic MIL-53(Al) metal organic frameworks (MOFs), with good magnetic responsiveness, were synthesized and applied for the magnetic solid-phase extraction (MSPE) of chloramphenicol, bisphenol A, estradiol, and diethylstilbestrol. Terephthalic acid (HBDC) organic ligands were pre-coupled on the surface of amino-FeO composites (HBDC@FeO).
View Article and Find Full Text PDFTrends Food Sci Technol
April 2022
Background: In the context of the current pandemic caused by the novel coronavirus, molecular detection is not limited to the clinical laboratory, but also faces the challenge of the complex and variable real-time detection fields. A series of novel coronavirus events were detected in the process of food cold chain packaging and transportation, making the application of molecular diagnosis in food processing, packaging, transportation, and other links urgent. There is an urgent need for a rapid detection technology that can adapt to the diversity and complexity of food safety.
View Article and Find Full Text PDFSwift and effective diagnosis of acute myocardial infarction (AMI) is critical to patient survival due to its serious life-threatening effects and increasing incidence. Creatine kinase MB (CK-MB) is one of the markers of AMI. In this work, we enabled a portable visual quantitative assay of CK-MB by incorporating target-responsive DNA hydrogel with a microfluidic chip.
View Article and Find Full Text PDFIn recent years, the combination of DNA nanotechnology and biosensing has been extensively reported. Herein, we attempted to develop a dual sensitization smartphone colorimetric strategy based on rolling circle amplification (RCA) coils gathering Au tetrahedra and explore its application. The dual sensitization effect of this strategy was achieved by rolling circle amplification (RCA) and Au tetrahedra.
View Article and Find Full Text PDFRaman spectroscopy combined with artificial intelligence algorithms have been widely explored and focused on in recent years for food safety testing. It is still a challenge to overcome the cumbersome culture process of bacteria and the need for a large number of samples, which hinder qualitative analysis, to obtain a high classification accuracy. In this paper, we propose a method based on Raman spectroscopy combined with generative adversarial network and multiclass support vector machine to classify foodborne pathogenic bacteria.
View Article and Find Full Text PDFMycotoxins cause significant harm to human health, so it is imperative to develop a highly sensitive and easy-to-operate method for the detection of mycotoxins. Herein, a fluorescence-based magnetic separation immunoassay for simultaneous detection of mycotoxins fumonisin B1 and zearalenone is established. The method employed high fluorescent upconversion-nanoparticles(UCNPs) conjugated with biotinylated antigens as upconversion fluoroscent probes.
View Article and Find Full Text PDFSestrin2 (SESN2) is a conserved stress-inducible protein (also known as hypoxia-inducible gene 95 (HI95)) that is induced under hypoxic conditions. SESN2 represses the production of reactive oxygen species (ROS) and provides cytoprotection against various noxious stimuli, including hypoxia, oxidative stress, endoplasmic reticulum (ER) stress and DNA damage. In recent years, the determination of the regulation and signalling mechanisms of SESN2 has increased our understanding of its role in the hypoxic response.
View Article and Find Full Text PDFThe abuse of antibiotics leads to an increase in resistant strains, which in turn leads to the development of superbugs that pose great difficulties for the treatment of human diseases. A high-throughput and highly sensitive avidin biotin complex immunosorbent assay based on upconversion nanoparticles controllable assembly (ABC-ULISA) for the detection of antibiotics was developed, which enabled accurate quantitative detection in a shorter period of time. Streptavidin and biotin-labeled upconversion nanoparticles form avidin-biotin-upconversion complex, which was then combined with biotinylated antibody to achieve double amplification of the signal, further improving detection sensitivity.
View Article and Find Full Text PDFA rapid and ultrasensitive method for colourimetric/photothermal dual-readout detection was developed using an 808 nm NIR laser and a thermal imaging app on mobile phone. Norfloxacin was used as a model contaminant to demonstrate this universal rapid detection method. It is innovatively, to use the advanced two-dimensional material black phosphorus as a colourimetric/photothermal reagent for the first time.
View Article and Find Full Text PDFSensitive and reliable analytical methods for monitoring of microcystin-LR (MC-LR) are urgently necessary due to its great harm to human health and aquatic organisms. In this work, a novel Cu/Au/Pt trimetallic nanoparticles (Cu/Au/Pt TNs)-encapsulated DNA hydrogel was prepared for colorimetric detection of MC-LR. The Cu/Au/Pt TNs were captured and released with precise control by the target-responsive 3D DNA hydrogels, which combined dual advantages of the target responsive DNA hydrogel and Cu/Au/Pt TNs of enhanced peroxidase-like activity.
View Article and Find Full Text PDFEnvironmental endocrine disruptors in the environment and food, especially 17 β-estradiol (E2), are important factors affecting the growth and development of organisms. In this research, we constructed a fluorescence strategy for two-step amplification that combined two currently popular methods, exponential amplification reaction (EXPAR) and hybridization chain reaction (HCR). E2 competed with the complementary DNA (cDNA) to bind the aptamer modified on the magnetic beads.
View Article and Find Full Text PDFThis study describes an upconversion fluorescent aptasensor based on black phosphorus nanohybrids and self-assembled DNA tetrahedrons dual-amplification strategy for rapid detection of the environmental estrogens bisphenol A (BPA) and 17β-estradiol (E2). Tetrahedron complementary DNAs (T-cDNAs) were self-assembled in an oriented fashion on a 2D nanohybrid composed of black phosphorus (BP) and gold to give a materials of architecture BP-Au@T-cDNAs. In parallel, core-shell upconversion nanoparticles were modified with aptamers (UCNPs@apts) and used as capture probes.
View Article and Find Full Text PDF