Publications by authors named "Tidd D"

Background: The use of naloxone, an opioid antagonist, is a critical component of the US response to fatal opioid-involved overdoses. The importance and utility of naloxone in preventing fatal overdoses have been widely declaimed by medical associations and government officials and are supported by strong research evidence. Still, there are gaps in the current US national strategy because many opioid-involved overdose fatalities have no evidence of naloxone administration.

View Article and Find Full Text PDF

Introduction: For decades, there has been a deficit of mental health services in rural areas of the United States. Beyond that longstanding need, the COVID-19 pandemic has reportedly increased the prevalence of unmet mental health needs among adults. Presently, many non-critical but urgent mental health concerns are first identified in rural emergency departments.

View Article and Find Full Text PDF

Prospective longitudinal data collection is an important way for researchers and evaluators to assess change. In school-based settings, for low-risk and/or likely-beneficial interventions or surveys, data quality and ethical standards are both arguably stronger when using a waiver of parental consent-but doing so often requires the use of anonymous data collection methods. The standard solution to this problem has been the use of a self-generated identification code.

View Article and Find Full Text PDF

We have established that CpG oligodeoxynucleotide 5mers, of sequence type CGNNN (N = A, G, C or T), rapidly induce apoptosis/cell cycle arrest in human leukaemia lines. The 5'-CpG is obligatory for these effects. Induction of apoptosis in MOLT-4 cells did not require new protein synthesis and was insensitive to the caspase 3 inhibitor, Ac-DEVD-CHO, although the latter abrogated DNA laddering, phosphatidylserine externalization and collapse of the mitochondrial transmembrane potential.

View Article and Find Full Text PDF

Background: A study was undertaken to resolve preliminary conflicting results on the proliferation of leukemia cells observed with different c-myc antisense oligonucleotides.

Results: RNase H-active, chimeric methylphosphonodiester / phosphodiester antisense oligodeoxynucleotides targeting bases 1147-1166 of c-myc mRNA downregulated c-Myc protein and induced apoptosis and cell cycle arrest respectively in cultures of MOLT-4 and KYO1 human leukemia cells. In contrast, an RNase H-inactive, morpholino antisense oligonucleotide analogue 28-mer, simultaneously targeting the exon 2 splice acceptor site and initiation codon, reduced c-Myc protein to barely detectable levels but did not affect cell proliferation in these or other leukemia lines.

View Article and Find Full Text PDF

Antisense oligonucleotides provide a powerful tool in order to determine the consequences of the reduced expression of a selected target gene and may include target validation and therapeutic applications. Methods of predicting optimum antisense sites are not always effective. We have compared the efficacy of antisense oligonucleotides, which were selected in vitro using random combinatorial oligonucleotide libraries of differing length and complexity, upon putative target sites within TNFalpha mRNA.

View Article and Find Full Text PDF

Mcl-1 is a member of the Bcl-2 protein family, which has been shown to delay apoptosis in transfection and/or overexpression experiments. As yet no gene knockout mice have been engineered, and so there is little evidence to show that loss of Mcl-1 expression is sufficient to trigger apoptosis. U937 cells constitutively express the antiapoptotic protein Bcl-2; but during differentiation, in response to the phorbol ester PMA (phorbol 12 beta-myristate 13 alpha-acetate), Mcl-1 is transiently induced.

View Article and Find Full Text PDF

A chimeric methylphosphonodiester/phosphodiester 15mer oligodeoxynucleotide of randomly selected sequence was observed to rapidly induce apoptosis in MOLT-4 and Jurkat E6 T lymphocytic leukaemia cells following intracytoplasmic delivery. A series of further methylphosphonate substitutions and mutations and truncations of the oligodeoxynucleotide served to establish that the phosphodiester-linked sequence CGGTA present in the 15mer was responsible for this biological activity. End-protected CpG oligodeoxy-nucleotide 5mers of sequence type CGNNN exhibited a range of apoptosis-inducing potencies, with CGTTA being the most active.

View Article and Find Full Text PDF

A region of c-myc mRNA was identified which permitted very efficient antisense effects to be achieved in living cells using chimeric methylphosphonate--phosphodiester antisense effectors. Novel inosine--containing ribozymes (which cleave after NCH triplets) were directed to an ACA triplet within this region and delivered into living cells. No ribozyme intracellular activity could be identified.

View Article and Find Full Text PDF

Antisense oligodeoxyribonucleotides (ODN) targeted against the breakpoint in BCR-ABL mRNA will specifically decrease BCR-ABL mRNA, provided cells are first permeabilised with streptolysin-O (SL-O). We used 18-mer chimeric methylphosphonodiester: phosphodiester linked (4-9-4) ODN complementary to 9 bases either side of the BCR-ABL junction to purge harvests ex vivo in three CML patients who remained completely Ph positive after multiple chemotherapy courses. After CD34+ cell selection and SL-O permeabilisation, harvests were purged with 20 microM ODN.

View Article and Find Full Text PDF

A 28-mer morpholino oligonucleotide analog was designed to hybridize to 8 bases of intron 1 and extend 2 bases beyond the translation initiation codon in exon 2 of the unspliced c-myc RNA transcript. Delivery of this compound into human chronic myeloid leukemia KYO1 cells, by streptolysin O permeabilization, resulted in almost total ablation of the 65 kDa c-MYC protein expression for at least 24 hours after treatment. An unexpected band with SDS-PAGE electrophoretic mobility indicating a protein of about 47 kDa was apparent on the 24-hour western blots that were developed using antibodies that recognize MYC protein C terminal epitopes.

View Article and Find Full Text PDF

During the course of a study aimed at improving antisense oligodeoxynucleotide-mediated ex vivo bone marrow purging of patients suffering from chronic myeloid leukemia (CML), the properties of a number of antisense structures intended to reduce the expression of c-myc, mutant p53, and bcr-abl mRNAs and proteins were examined. The majority of the antisense oligodeoxynucleotides were designed to be capable of directing ribonuclease H (RNase H) cleavage of their target mRNAs. Streptolysin O (SLO) reversible permeabilization was used to deliver the oligodeoxynucleotides into the CML line KYO-1.

View Article and Find Full Text PDF

The hybrid gene BCR-ABL that typifies chronic myeloid leukemia (CML) represents an attractive target for therapy with antisense oligodeoxyribonucleotides (ODN). A central obstacle in the therapeutic application of ODN is their poor cellular uptake. Adding various lipophilic conjugates to the ODN backbone has been reported to improve uptake, and electroporation of target cells has also been shown to enhance intracellular ODN delivery.

View Article and Find Full Text PDF

To evaluate the role of neuropeptide Y (NPY), a potent appetite stimulant, in controlling food intake and body weight, we investigated the use of antisense oligodeoxynucleotides (ODNs) to inhibit NPY gene expression in the hypothalamus. We compared the hypothalamic distribution of fluorescein-labelled ODNs administered intracerebroventricularly, and effects on food intake and NPY gene expression, of three different structural modifications of an antisense ODN sequence against NPY. Rats had either the antisense or missense ODNs (24 micrograms/day) or saline infused into the third ventricle by osmotic minipumps for 7 days.

View Article and Find Full Text PDF

It is widely accepted that most cell types efficiently exclude oligonucleotides in vitro and require specific delivery systems, such as cationic lipids, to enhance uptake and subsequent antisense effects. Oligonucleotides are not readily transfected into leukaemia cell lines using cationic lipid systems and streptolysin O (SLO) is used to effect their delivery. We wished to investigate the optimal oligonucleotide composition for antisense efficacy and specificity following delivery into leukaemia cells using SLO.

View Article and Find Full Text PDF

Antisense oligodeoxyribonucleotides (ODN) have been shown to produce a sequence-specific cleavage of BCR-ABL mRNA. They may therefore have clinical potential for purging harvests from chronic myeloid leukaemia (CML) patients, prior to autografting. Whilst ODN are highly effective in cell-free systems, their uptake into intact cells is very poor.

View Article and Find Full Text PDF

Antisense oligodeoxynucleotides targeted to bcr-abl are potential ex vivo purging agents for use with autologous bone marrow transplantation in the treatment of chronic myeloid leukemia (CML). We investigated, in a cell-free system, the activity and nuclease resistance of phosphodiester, phosphorothioate, chimeric methylphosphonate/phosphodiester, and chimeric methylphosphonate/phosphorothioate antisense octadecamers directed against either b2a2 or b3a2 bcr-abl breakpoint RNAs. Certain chimeric compounds were shown to possess targeted activity broadly equal to the parent phosphodiester or phosphorothioate forms and greater resistance to the nucleases present in cell extracts.

View Article and Find Full Text PDF

We have previously demonstrated, in vitro, that phosphodiester and phosphorothioate antisense oligodeoxynucleotides could direct ribonuclease H to cleave non-target RNA sites and that chimeric methylphosphonodiester/phosphodiester analogue structures were substantially more specific. In this report we show that such chimeric molecules can promote point mutation-specific scission of target mRNA by both Escherichia coli and human RNases H in vitro. Intact human leukaemia cells 'biochemically microinjected' with antisense effectors demonstrated efficient suppression of target mRNA expression.

View Article and Find Full Text PDF

Most mammalian cell types appear to take up antisense oligonucleotides and oligonucleotide analogs from the bathing medium by highly inefficient endocytic mechanisms, and most if not all intracellular oligomer is sequestered in vesicles, still separated by a membrane from the target mRNA. On the other hand, oligonucleotides introduced directly into the cytoplasm by microinjection rapidly accumulate in the cell nucleus. Poor delivery to the designated site of action of antisense oligonucleotides is a major problem limiting their routine use in genetic research and their development as potential therapeutic agents.

View Article and Find Full Text PDF

The involvement of ribonuclease H (RNase H) in antisense phenomena in intact cells has, to date, only been adequately demonstrated for microinjected Xenopus systems. The significance of RNase H for the antisense effects of oligodeoxynucleotides observed in human and other mammalian cell cultures has remained obscure, in part because of inadequate analytic methods. In this report we show that the "reverse ligation-mediated PCR" (RL-PCR) procedure permits amplification of RNA fragments produced by oligodeoxynucleotide-directed RNase H activity.

View Article and Find Full Text PDF