Representation learning seeks to extract useful and low-dimensional attributes from complex and high-dimensional data. Natural language processing (NLP) was used to investigate the representation learning models to extract words' feature vectors using their sequential order in the text via word embeddings and language models that maintain their semantic meaning. Inspired by NLP, in this paper, we tackle the representation learning problem for trajectories, using NLP methods to encode external sensors positioned in the road network and generate the features' space to predict the next vehicle movement.
View Article and Find Full Text PDF