Prostate cancer metastasis is a significant cause of mortality in men. PKD3 facilitates tumor growth and metastasis, however, its regulation is largely unclear. The Hsp90 chaperone stabilizes an array of signaling client proteins, thus is an enabler of the malignant phenotype.
View Article and Find Full Text PDFGnRH analogues are effective targeting moieties and able to deliver anticancer agents selectively into malignant tumor cells which highly express GnRH receptors. However, the quantitative analysis of GnRH analogues' cellular uptake and the investigated cell types in GnRH-based drug delivery systems are currently limited. Previously introduced, selectively labeled fluorescent GnRH I, -II and -III derivatives provide great detectability, and they have suitable chemical properties for reproducible and robust experiments.
View Article and Find Full Text PDFTargeted tumour therapy is the focus of recent cancer research. Gonadotropin-releasing hormone (GnRH) analogues are able to deliver anticancer agents selectively into tumour cells, which highly express GnRH receptors. However, the effectiveness of different analogues as targeting moiety in drug delivery systems is rarely compared, and the investigated types of cancer are also limited.
View Article and Find Full Text PDFActivation of various interacting stress kinases, particularly the c-Jun N-terminal kinases (JNK), and a concomitant phosphorylation of insulin receptor substrate 1 (IRS-1) at serine 307 play a central role both in insulin resistance and in β-cell dysfunction. IRS-1 phosphorylation is stimulated by elevated free fatty acid levels through different pathways in obesity. A series of novel pyrido[2,3-d]pyrimidin-7-one derivatives were synthesized as potential antidiabetic agents, preventing IRS-1 phosphorylation at serine 307 in a cellular model of lipotoxicity and type 2 diabetes.
View Article and Find Full Text PDFEmerging evidence suggests that the vascular endothelial growth factor receptor 2 (VEGFR2) and protein kinase D1 (PKD1) signaling axis plays a critical role in normal and pathological angiogenesis and inflammation related processes. Despite all efforts, the currently available therapeutic interventions are limited. Prior studies have also proved that a multiple target inhibitor can be more efficient compared to a single target one.
View Article and Find Full Text PDFActivating mutations in the epidermal growth factor receptor (EGFR) have been identified in a subset of non-small cell lung cancer (NSCLC), which is one of the leading cancer types worldwide. Application of EGFR tyrosine kinase inhibitors leads to acquired resistance by secondary EGFR mutations or by amplification of the hepatocyte growth factor receptor (c-Met) gene. Although several EGFR and c-Met inhibitors have been reported, potent dual EGFR/c-Met inhibitors, which can overcome this latter resistance mechanism, have hitherto not been published and have not reached clinical trials.
View Article and Find Full Text PDFThe epidermal growth factor receptor (EGFR) family has been well-known for more than ten years as the target of non-small lung carcinoma (NSCLC) which is one of the leading cause of mortality among the cancer types. The receptor tyrosine kinase inhibitors (gefitinib, erlotinib, lapatinib) which have been applied in the therapy, are not able to inhibit the progression of this disease perfectly because of resistance. It has been demonstrated that the amplification of mesenchymal-epithelial transition factor (c-Met) or secondary mutation of EGFR kinase causes the resistance against EGFR inhibitors in 18-20 percent of the cases.
View Article and Find Full Text PDFDasatinib is a tyrosine kinase inhibitor used to treat imatinib-resistant chronic myeloid leukemia and Philadelphia chromosome-positive acute lymphoblastic leukemia. At present, little is known about how dasatinib influences nonmalignant cells. In the present study, we tested the effect of dasatinib on functional responses of normal mature human neutrophils.
View Article and Find Full Text PDFThrough their reactive oxygen species (ROS) producing function, NADPH oxidase (NOX) enzymes have been linked to several oxidative stress related diseases. In our recently published paper [1] we have already shown the NOX4 inhibitory effect of diverse, molecule sub-libraries and their biological importance. We also presented our work connected to potential anti-tumour molecules and the relationship between their biological activity and physico-chemical properties [2].
View Article and Find Full Text PDFTissue engineering is one of the most promising research areas in bioregenerative medicine. However, the restoration of biological functionalities by implanting bioartificially engineered tissues is still highly limited because of their lack of vascular networks. The use of proangiogenic molecules delivered from a controlled release device is a promising strategy to induce tissue vascularization.
View Article and Find Full Text PDFNOX enzymes are the major contributors in many oxidative damage related diseases. Unfortunately, at present no specific NOX inhibitor is available. Here, we describe the discovery and development of novel NOX4 inhibitors.
View Article and Find Full Text PDFNew blood vessel formation is a critical requirement for treating many vascular and ischemia related diseases, as well as for many tissue engineering applications. Angiogenesis and vasculogenesis, in fact, represent crucial processes for the functional regeneration of complex tissues through tissue engineering strategies. Several growth factors (GFs) and signaling molecules involved in blood vessels formation have been identified, but their application to the clinical setting is still strongly limited by their extremely short half-life in the body.
View Article and Find Full Text PDFThe aim of this work was to study the dityrosine-forming activity of lactoperoxidase (LPO) and its potential application for measuring hydrogen peroxide (H2O2). It was observed that LPO was able to form dityrosine at low H2O2 concentrations. Since dityrosine concentration could be measured in a simple fluorimetric reaction, this activity of the enzyme was utilized for the measurement of H2O2 production in different systems.
View Article and Find Full Text PDFNovel somatostatin analogues containing a pyrazinone ring, compounds 1 and 2, exhibited good antiproliferative activity on A431 tumor cells. To increase antitumor activity and binding affinity on somatostatin receptors (SSTRs), we substituted Tyr in the critical sequence, Tyr-D-Trp-Lys, with more hydrophobic aromatic residue. The substituted compounds dramatically lost antitumor activity, indicating that Tyr residue was an essential residue.
View Article and Find Full Text PDFOn the basis of the structure of somatostatin analogue TT-232 (1), which exhibited a highly potent antitumor activity, we synthesized small linear peptide derivatives and evaluated their antitumor and apoptotic activity. Of them, Boc-Tyr-D-Trp-1-adamantylamide (5) had the most potent cell antiproliferative activity in SW480 and A431 cell lines, which was supported in A431 cell lines by FACS analysis that demonstrated a major increase in DNA fragmentation in the subG1 fraction.
View Article and Find Full Text PDFRecent studies have demonstrated the importance of protein kinase D (PKD) in cell proliferation and apoptosis. Here, we report that in vitro cleavage of recombinant PKD1 by caspase-3 generates two alternative active PKD fragments. N-terminal sequencing of these fragments revealed two distinct caspase-3 cleavage sites located between the acidic and pleckstrin homology (PH) domains of PKD1.
View Article and Find Full Text PDFThe protein kinase D family of enzymes consists of three isoforms: PKD1/PKCmu PKD2 and PKD3/PKCnu. They all share a similar architecture with regulatory sub-domains that play specific roles in the activation, translocation and function of the enzymes. The PKD enzymes have recently been implicated in very diverse cellular functions, including Golgi organization and plasma membrane directed transport, metastasis, immune responses, apoptosis and cell proliferation.
View Article and Find Full Text PDFRecent research has identified protein kinase D (PKD, also called PKCmu) as a serine/threonine kinase with potentially important roles in growth factor signaling as well as in stress-induced signaling. Moreover, PKD has emerged as an important regulator of plasma membrane enzymes and receptors, in some cases mediating cross-talk between different signaling systems. The recent discovery of two additional kinases belonging to the PKD family and the plethora of proteins that interact with PKD point to a multifaceted regulation and a multifunctional role for these enzymes, with functions in processes as diverse as cell proliferation, apoptosis, immune cell regulation, tumor cell invasion and regulation of Golgi vesicle fission.
View Article and Find Full Text PDFThe protein kinase D (PKD) enzymes represent a new family of second messenger stimulated kinases, with diacylglycerol as a prime, but not the sole, mediator of activation. Their molecular architecture features a catalytic domain, unrelated to that of all PKC family members, and a large inhibitory, regulatory domain, comprised of two Zinc fingers, and a pleckstrin homology domain. These different sub-domains play distinctive roles in the activation, translocation and biological functions of the kinase.
View Article and Find Full Text PDF