We compare photoaligning properties of polymer layers fabricated from the same constituents: polymethyl-methacrylate (PMMA) and azo-dye Disperse Red 1 (DR1), either chemically attached to the PMMA main-chain, or physically mixed with it. Photoaligning properties depend on the preparation method drastically. Photoalignment was found to be far more efficient when PMMA is functionalized with DR1 compared to the case of physically mixing the constituents.
View Article and Find Full Text PDFIn this communication, we summarise our results related to light-induced orientational phenomena at liquid crystal-polymer interfaces. We investigated photoalignment for various nematics at the interface with the photosensitive polymer layer polymethyl methacrilate functionalised with azo dye Disperse Red 1. It was found that the efficiency of photoalignment exhibits marked differences depending on the structure of the rigid core of the liquid crystal molecules.
View Article and Find Full Text PDFWe demonstrate experimentally that the anchoring of a nematic liquid crystal on a solid substrate together with the anchoring of the liquid crystal on a nanoparticle surface induces orientational self-assembly of anisometric nanoparticles in liquid crystal droplets. The observed phenomenon opens a novel route for fabrication of thin colloidal films with tailored properties.
View Article and Find Full Text PDFWe provide experimental evidence for the influence of the molecular structure of the nematic liquid crystal (NLC) on the photoalignment process in three dimensions at the interface with a polymer layer. In particular, the experimental findings are explained through the presence (or absence) of the π-π aromatic interactions between the NLC and the polymer. The influence of the nematic-to-smectic A phase transition on the photocontrol is also addressed.
View Article and Find Full Text PDFThe influence of magnetic field on the isotropic-to-nematic phase transition temperature is investigated in neat bent-core and calamitic liquid crystals, in their mixture, and in samples doped with spherical magnetic nanoparticles for two different orientations of the magnetic field. A magnetic-field-induced negative or positive shift of the transition temperature was detected depending on the magnetic field orientation with respect to the initial orientation of the nematic phase, and on the type of liquid crystal matrix.
View Article and Find Full Text PDFBeilstein J Nanotechnol
November 2017
We report on experimental studies focusing on the dynamic ac magnetic susceptibility of a ferronematic. It has been shown recently, that in the isotropic phase of a ferronematic, a weak dc bias magnetic field of a few oersteds increases the ac magnetic susceptibility. This increment vanishes irreversibly if the substance is cooled down to the nematic phase, but can be reinduced by applying the dc bias field again in the isotropic phase [Tomašovičová, N.
View Article and Find Full Text PDFThe magnetic properties of a ferronematic, i.e., a nematic liquid crystal doped with magnetic nanoparticles in low volume concentration are studied, with the focus on the ac magnetic susceptibility.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
January 2014
Liquid crystal layers sandwiched between a reference plate and a photosensitive substrate were investigated. We focused on the reverse geometry, where the cell was illuminated by a laser beam from the reference side. In planar cells both static and dynamic instabilities occurred, depending on the angle between the laser polarization and the director orientation on the reference plate.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
January 2013
The response in capacitance to low external magnetic fields (up to 0.1 T) of suspensions of spherical magnetic nanoparticles, single-wall carbon nanotubes (SWCNT), SWCNT functionalized with carboxyl group (SWCNT-COOH), and SWCNT functionalized with Fe(3)O(4) nanoparticles in a nematic liquid crystal has been studied experimentally. The volume concentration of nanoparticles was φ(1)=10(-4) and φ(2)=10(-3).
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
June 2011
The temporal evolution of the spatially periodic electroconvection (EC) patterns has been studied within the period of the driving ac voltage by monitoring the light intensity diffracted from the pattern. Measurements have been carried out on a variety of nematic systems, including those with negative dielectric and positive conductivity anisotropy, exhibiting "standard EC" (s-EC), those with both anisotropies negative exhibiting "nonstandard EC" (ns-EC), as well as those with the two anisotropies positive. Theoretical predictions have been confirmed for stationary s-EC and ns-EC patterns.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
February 2010
Two electroconvection (EC) pattern morphologies--a cellular and a subsequent roll pattern--have been detected in the same frequency range in a nematic with positive permittivity and conductivity anisotropies. The frequency dependences of the onset voltages and critical wave numbers have been determined both for homeotropic and planar alignments. It has been proven that both pattern morphologies have a dielectric time symmetry.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
September 2008
An unexpected type of behavior in electroconvection (EC) has been detected in nematic liquid crystals (NLCs) under the condition of comparable time scales of the director relaxation and the period of the driving ac voltage. The studied NLCs exhibit standard EC (s-EC) at the onset of the instability, except one compound in which nonstandard EC (ns-EC) has been detected. In the relevant frequency region, the threshold voltage for conductive s-EC bends down considerably, while for dielectric s-EC it bends up strongly with the decrease of the driving frequency.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
July 2008
In this work the 4-(trans- 4'-n -hexylcyclohexyl)-isothiocyanatobenzene (6CHBT) liquid crystal was doped with differently shaped magnetite nanoparticles. The structural changes were observed by capacitance measurements and showed significant influence of the shape and size of the magnetic particles on the magnetic Fréedericksz transition. For the volume concentration phi= 2 x 10(-4) of the magnetic particles, the critical magnetic field was established for the pure liquid crystal, and for liquid crystals doped with spherical, chainlike, and rodlike magnetic particles.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
February 2008
For many years it has been commonly accepted that electroconvection (EC) as primary instability in nematic liquid crystals for the "classical" planar geometry requires a positive anisotropy of the electric conductivity, sigma(a), and a slightly negative dielectric anisotropy, epsilon(a). This firm belief was supported by many experimental and theoretical studies. Recent experiments, which have surprisingly revealed EC patterns at negative conduction anisotropy as well, have motivated the theoretical studies in this paper.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
June 2007
Electric-field-driven pattern formation has been investigated in a nematic liquid crystal with negative dielectric and conductivity anisotropies. Despite the fact that the standard Carr-Helfrich theory predicts no hydrodynamic instability for such compound, experiments reveal convection patterns which we call nonstandard electroconvection (ns-EC). In this work, we characterize the ns-EC patterns by measuring the frequency, thickness, and temperature dependence of the threshold voltage, wave number, roll orientation, etc.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
January 2004
Fluctuations of the injected electric power during electroconvection (EHC) of liquid crystals are reported in both the conductive and the dielectric regime of convection. The amplitude and the frequency of the fluctuations, as well as the probability density functions have been compared in these two regimes and substantial differences have been found both in defect turbulence of EHC and at the DSM1-->DSM2 transition.
View Article and Find Full Text PDFWe report on the distribution spectra of the fluctations in the amount of power injected into a liquid crystal undergoing electroconvective flow. The probability distribution functions (PDFs) of the fluc-tuations as well as the magnitude of the fluctuations have been determined in a wide range of imposed stress both for unconfined and confined flow geometries. These spectra are compared to those found in other systems held far from equilibrium, and find that in certain conditions we obtain the universal PDF form reported by Phys.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
September 2003
This is a study of the global fluctuations in power injection and light transmission through a liquid crystal just above the onset of electroconvection. The source of the fluctuations is identified as the creation and annihilation of defects. They are spatially uncorrelated and yet temporally correlated.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
April 2003
The influence of an external electric field (applied to the nematic liquid crystal layer) on the morphology of the nematic-liquid-crystal-air interface has been studied experimentally in radial Hele-Shaw geometry. The effective viscosity mu(eff) of the nematic has been tuned by the electric field E and by the flow. At low excess pressure p(e) (where the growth of the interface is controlled mainly by the surface tension sigma), the applied E has no significant influence on the morphology of the interface, but decreases its normal velocity due to the increase of mu(eff).
View Article and Find Full Text PDF