Publications by authors named "Tibor Alpar"

The green and facile synthesis of metallic silver nanoparticles (AgNPs) is getting tremendous attention for exploring superior applications because of their small dimensions and shape. AgNPs are already proven materials for superior coloration, biocidal, thermal, UV-protection, and mechanical performance. Originally, some conventional chemical-based reducing agents were used to synthesize AgNPs, but these posed potential risks, especially for enhanced toxicity.

View Article and Find Full Text PDF

The coconut () fruits are extensively grown in tropical countries. The use of coconut husk-derived coir fiber-reinforced biocomposites is on the rise nowadays due to the constantly increasing demand for sustainable, renewable, biodegradable, and recyclable materials. Generally, the coconut husk and shells are disposed of as waste materials; however, they can be utilized as prominent raw materials for environment-friendly biocomposite production.

View Article and Find Full Text PDF

This study reports on a novel coloration approach for sisal/cotton interwoven fabric via in situ synthesis of European larch (Larix decidua) heartwood-anchored sustainable nanosilver. The heartwood extracts functioned as the reducing and stabilizing agent in reaction systems. The deposited silver nanoparticles (AgNPs) over the fabric surfaces displayed brilliant coloration effects with improved fastness ratings and color strengths (K/S).

View Article and Find Full Text PDF

The development of sustainable and innovative products through solving the constantly raising demands of end users is one of the significant parts of research and development. Herein, the development of a green composite is reported with the reinforcement of naturally originated flax and artificial glass woven fabrics through incorporating with the methylene diphenyl diisocyanate (MDI) resin. The glass fabrics were treated with silane and flax fabrics by using NaOH before the composite production to increase the affinity of fibers toward the resin.

View Article and Find Full Text PDF

Coir is one of the most important natural fibers having significant potentiality in structural biocomposites production. The long coir fiber (LCF) and short fibrous chips (CFC) were extracted from the husk of coconut. The dimensions of the CFC were within 1.

View Article and Find Full Text PDF

Composite materials reinforced with biofibers and nanomaterials are becoming considerably popular, especially for their light weight, strength, exceptional stiffness, flexural rigidity, damping property, longevity, corrosion, biodegradability, antibacterial, and fire-resistant properties. Beside the traditional thermoplastic and thermosetting polymers, nanoparticles are also receiving attention in terms of their potential to improve the functionality and mechanical performances of biocomposites. These remarkable characteristics have made nanobiocomposite materials convenient to apply in aerospace, mechanical, construction, automotive, marine, medical, packaging, and furniture industries, through providing environmental sustainability.

View Article and Find Full Text PDF

A mathematical model describing the shear rate and pressure variation in a complex flow field created in a hydrodynamic cavitation reactor (stator and rotor assembly) has been depicted in the present study. The design of the reactor is such that the rotor is provided with surface indentations and cavitational events are expected to occur on the surface of the rotor as well as within the indentations. The flow characteristics of the fluid have been investigated on the basis of high accuracy compact difference schemes and Navier-Stokes method.

View Article and Find Full Text PDF