Background: Growing research on lignin depolymerization to functionalized bio-aromatics has necessitated dedicated analysis techniques. However, immense variability in molecular weight and functional groups of the depolymerization products impedes fast analysis of a large number of samples while remaining in-depth enough for catalyst screening or reaction condition optimization. While GPC-HPLC-UV/VIS has been a promising technique, up until now, the information it provides is largely qualitative.
View Article and Find Full Text PDFLignin valorization and particularly its depolymerization into bio-aromatics, has emerged as an important research topic within green chemistry. However, screening of catalysts and reaction conditions within this field is strongly constrained by the lack of analytical techniques that allow for fast and detailed mapping of the product pools. This analytical gap results from the inherent product pool complexity and the focus of the state-of-the-art on monomers and dimers, overlooking the larger oligomers.
View Article and Find Full Text PDFMonometallic cerium layered double hydroxides (Ce-LDH) supports were successfully synthesized by a homogeneous alkalization route driven by hexamethylenetetramine (HMT). The formation of the Ce-LDH was confirmed and its structural and compositional properties studied by XRD, SEM, XPS, iodometric analyses and TGA. HT-XRD, N-sorption and XRF analyses revealed that by increasing the calcination temperature from 200 to 800 °C, the Ce-LDH material transforms to ceria (CeO) in four distinct phases, i.
View Article and Find Full Text PDF