Simple analytical formulas are proposed to describe the plasma potential in a steady-state magnetron discharge, based on the results of various experiments and numerical simulations reported in the literature. The description is two-dimensional (2D), covering two main regions, the cathode sheath and the ionization region, both contributing to electron energization. A parabolic potential in the axial direction governs the cathode sheath.
View Article and Find Full Text PDFThin and ultrathin carbon films reduce the laser energy required for copper powder fusion in selective laser melting (SLM). The low absorption of infrared (IR) radiation and its excellent thermal conductivity leads to an intricate combination of processing parameters to obtain high-quality printed parts in SLM. Two carbon-based sacrificial thin films were deposited onto copper to facilitate light absorption into the copper substrates.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2021
In dry sliding, the coefficient of friction depends on the material pair and contact conditions. If the material and operating conditions remain unchanged, the coefficient of friction is constant. Obviously, we can tune friction by surface treatments, but it is a nonreversible process.
View Article and Find Full Text PDFThe electron emission by micro-protrusions has been studied for over a century, but the complete explanation of the unstable behaviors and their origin remains an open issue. These systems often evolve towards vacuum breakdown, which makes experimental studies of instabilities very difficult. Modeling studies are therefore necessary.
View Article and Find Full Text PDFThe measurement of electron density is a key issue in understanding and controlling plasma applications. To date, plasma density in electric thrusters has been mainly evaluated with electrostatic techniques, such as the Langmuir probe, which could be quite invasive. In this paper, we propose the application of a microwave resonant probe, the curling probe, to the diagnostic of an electrodeless plasma thruster.
View Article and Find Full Text PDFX-ray gas attenuators act as stress-free high-pass filters for synchrotron and free-electron laser beamlines to reduce the heat load in downstream optical elements without affecting other properties of the X-ray beam. The absorption of the X-ray beam triggers a cascade of processes that ionize and heat up the gas locally, changing its density and therefore the X-ray absorption. Aiming to understand and predict the behaviour of the gas attenuator in terms of efficiency versus gas pressure, a hybrid model has been developed, combining three approaches: an analytical description of the X-ray absorption; Monte Carlo for the electron thermalization; and a fluid treatment for the electron diffusion, recombination and excited-states relaxation.
View Article and Find Full Text PDFWe report on a new route to grow epitaxial copper (Cu) ultra-thin films (up to 150 nm thick) at ambient temperature on Si(001) wafers covered with native oxide without any prior chemical etching or plasma cleaning of the substrate. It consists of a single-step deposition process using high power impulse magnetron sputtering (HiPIMS) and substrate biasing. For a direct current (DC) substrate bias voltage of -130 V, Cu/Si heteroepitaxial growth is achieved by HiPIMS following the Cu(001) [100]//Si(001) [110] orientation, while under the same average deposition conditions, but using conventional DC magnetron sputtering, polycrystalline Cu films with [111] preferred orientation are deposited.
View Article and Find Full Text PDFThe electron cyclotron drift instability, implicated in electron heating and anomalous transport, is detected in the plasma of a planar magnetron. Electron density fluctuations associated with the mode are identified via an adapted coherent Thomson scattering diagnostic, under direct current and high-power pulsed magnetron operation. Time-resolved analysis of the mode amplitude reveals that the instability, found at MHz frequencies and millimeter scales, also exhibits a kHz-scale modulation consistent with the observation of larger-scale plasma density nonuniformities, such as the rotating spoke.
View Article and Find Full Text PDF