Psychosis in Parkinson's disease is a common phenomenon associated with poor outcomes. To clarify the pathophysiology of this condition and the mechanisms of antipsychotic treatments, we have here characterized the neurophysiological brain states induced by clozapine, pimavanserin, and the novel prospective antipsychotic mesdopetam in a rodent model of Parkinson's disease psychosis, based on chronic dopaminergic denervation by 6-OHDA lesions, levodopa priming, and the acute administration of an NMDA antagonist. Parallel recordings of local field potentials from eleven cortical and sub-cortical regions revealed shared neurophysiological treatment effects for the three compounds, despite their different pharmacological profiles, involving reversal of features associated with the psychotomimetic state, such as a reduction of aberrant high-frequency oscillations in prefrontal structures together with a decrease of abnormal synchronization between different brain regions.
View Article and Find Full Text PDFHuntington's disease (HD) is a progressive, multifaceted neurodegenerative disease associated with weight loss and gut problems. Under healthy conditions, tight junction (TJ) proteins maintain the intestinal barrier integrity preventing bacterial translocation from the intestinal lumen to the systemic circulation. Reduction of TJs expression in Parkinson's disease patients has been linked with increased intestinal permeability-leaky gut syndrome.
View Article and Find Full Text PDFBody weight has been shown to be a predictor of clinical progression in Huntington's disease (HD). Alongside widespread neuronal pathology, both HD patients and the R6/2 mouse model of HD exhibit weight loss and increased energy expenditure, providing a rationale for targeting whole-body energy metabolism in HD. Leptin-deficient mice display low energy expenditure and increased body weight.
View Article and Find Full Text PDFLurasidone, a novel second-generation antipsychotic agent, exerts antidepressant actions in patients suffering from bipolar type I disorder. Lurasidone acts as a high affinity antagonist at multiple monoamine receptors, particularly 5-HT2A, 5-HT7, D2 and α2 receptors, and as a partial agonist at 5-HT1A receptors. Accumulating evidence indicates therapeutic actions by monoaminergic antidepressants are mediated via alterations of glutamate receptor-mediated neurotransmission.
View Article and Find Full Text PDF