Neurodynamic models that simulate how micro-level alterations propagate upward to impact macroscopic neural circuits and overall brain function may offer valuable insights into the pathological mechanisms of schizophrenia (SCZ). In this study, we integrated a neurodynamic model with the classical Contrastive Variational Autoencoder (CVAE) to extract and evaluate macro-scale SCZ-specific features, including subject-level, region-level parameters, and time-varying states. Firstly, we demonstrated the robust fitting of the model within our multi-site dataset.
View Article and Find Full Text PDFClosed-loop neuromodulation, especially using the phase of the electroencephalography (EEG) rhythm to assess the real-time brain state and optimize the brain stimulation process, is becoming a hot research topic. Because the EEG signal is non-stationary, the commonly used EEG phase-based prediction methods have large variances, which may reduce the accuracy of the phase prediction. In this study, we proposed a machine learning-based EEG phase prediction network, which we call EEG phase prediction network (EPN), to capture the overall rhythm distribution pattern of subjects and map the instantaneous phase directly from the narrow-band EEG data.
View Article and Find Full Text PDFBackground: Precisely localizing the seizure onset zone (SOZ) is critical for focal epilepsy surgery. Existing methods mainly focus on high-frequency activities in stereo-electroencephalography, but often fail when seizures are not driven by high-frequency activities. Recognized as biomarkers of epileptic seizures, ictal spikes in SOZ induce epileptiform discharges in other brain regions.
View Article and Find Full Text PDFMouse models are crucial for neuroscience research, yet discrepancies arise between macro- and meso-scales due to sample preparation altering brain morphology. The absence of an accessible toolbox for magnetic resonance imaging (MRI) data processing presents a challenge for assessing morphological changes in the mouse brain. To address this, we developed the MBV-Pipe (Mouse Brain Volumetric Statistics-Pipeline) toolbox, integrating the methods of Diffeomorphic Anatomical Registration Through Exponentiated Lie Algebra (DARTEL)-Voxel-based morphometry (VBM) and Tract-Based Spatial Statistics (TBSS) to evaluate brain tissue volume and white matter integrity.
View Article and Find Full Text PDFObjectives: Lymph node metastasis (LNM) is a pivotal determinant that influences the treatment strategies and prognosis for oropharyngeal squamous cell carcinoma (OPSCC) patients. This study aims to establish and verify a deep learning (DL) radiomics model for the prediction of LNM in OPSCCs using contrast-enhanced computed tomography (CECT).
Methods: A retrospective analysis included 279 OPSCC patients from three institutions.
Trends Cogn Sci
December 2024
Sustained attention, as the basis of general cognitive ability, naturally varies across different time scales, spanning from hours, e.g. from wakefulness to drowsiness state, to seconds, e.
View Article and Find Full Text PDFThe perirhinal cortex (PRC) and parahippocampal cortex (PHC) are core regions along the visual dual-stream. The specific functional roles of the PRC and PHC and their interactions with the downstream hippocampus cortex (HPC) are crucial for understanding visual memory. Our research used human intracranial EEGs to study the neural mechanism of the PRC, PHC, and HPC in visual object encoding.
View Article and Find Full Text PDFTo elucidate the brain-wide information interactions that vary and contribute to individual differences in schizophrenia (SCZ), an information-resolved method is employed to construct individual synergistic and redundant interaction matrices based on regional pairwise BOLD time-series from 538 SCZ and 540 normal controls (NC). This analysis reveals a stable pattern of regionally-specific synergy dysfunction in SCZ. Furthermore, a hierarchical Bayesian model is applied to deconstruct the patterns of whole-brain synergy dysfunction into three latent factors that explain symptom heterogeneity in SCZ.
View Article and Find Full Text PDFDespite the well-established phenomenon of improved memory performance through repeated learning, studies investigating the associated neural mechanisms have yielded complex and sometimes contradictory findings, and direct evidence from human neuronal recordings has been lacking. This study employs single-neuron recordings with exceptional spatial-temporal resolution, combined with representational similarity analysis, to explore the neural dynamics within the hippocampus and amygdala during repeated learning. Our results demonstrate that in the hippocampus, repetition enhances both representational specificity and fidelity, with these features predicting learning times.
View Article and Find Full Text PDFThe current study aimed to evaluate the susceptibility to regional brain atrophy and its biological mechanism in Alzheimer's disease (AD). We conducted data-driven meta-analyses to combine 3,118 structural magnetic resonance images from three datasets to obtain robust atrophy patterns. Then we introduced a set of radiogenomic analyses to investigate the biological basis of the atrophy patterns in AD.
View Article and Find Full Text PDFBackground: Aggression is a commonly hostile behavior linked to the hippocampal activity. Childhood trauma (CT) exposure has been associated with altered sensitization of the hypothalamic-pituitary-adrenal (HPA) axis and hippocampal volume,which could increase violent aggressive behaviors. Additionally, Catechol-O-methyltransferase (COMT), the major dopamine metabolism enzyme, is implicated in stress responsivity, including aggression.
View Article and Find Full Text PDFIEEE Trans Med Imaging
September 2024
Individual brains vary greatly in morphology, connectivity and organization. Individualized brain parcellation is capable of precisely localizing subject-specific functional regions. However, most individualization approaches have examined single modalities of data and have not generalized to nonhuman primates.
View Article and Find Full Text PDFThe rhesus macaque (Macaca mulatta) is a crucial experimental animal that shares many genetic, brain organizational, and behavioral characteristics with humans. A macaque brain atlas is fundamental to biomedical and evolutionary research. However, even though connectivity is vital for understanding brain functions, a connectivity-based whole-brain atlas of the macaque has not previously been made.
View Article and Find Full Text PDF. The development of electrical pulse stimulations in brain, including deep brain stimulation, is promising for treating various brain diseases. However, the mechanisms of brain stimulations are not yet fully understood.
View Article and Find Full Text PDFWhen presented with visual stimuli of face images, the ventral stream visual cortex of the human brain exhibits face-specific activity that is modulated by the physical properties of the input images. However, it is still unclear whether this activity relates to conscious face perception. We explored this issue by using the human intracranial electroencephalography technique.
View Article and Find Full Text PDFLarge-scale brain activity mapping is important for understanding the neural basis of behaviour. Electrocorticograms (ECoGs) have high spatiotemporal resolution, bandwidth, and signal quality. However, the invasiveness and surgical risks of electrode array implantation limit its application scope.
View Article and Find Full Text PDFFace processing includes two crucial processing levels - face detection and face recognition. However, it remains unclear how human brains organize the two processing levels sequentially. While some studies found that faces are recognized as fast as they are detected, others have reported that faces are detected first, followed by recognition.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
July 2023
It usually takes a long time to collect data for calibration when using electroencephalography (EEG) for driver drowsiness monitoring. Cross-dataset recognition is desirable since it can significantly save the calibration time when an existing dataset is used. However, the recognition accuracy is affected by the distribution drift problem caused by different experimental environments when building different datasets.
View Article and Find Full Text PDF