Publications by authors named "Tianzhe Zheng"

Active metasurfaces provide the opportunity for fast spatio-temporal control of light. Among various tuning methods, organic electro-optic materials provide some unique advantages due to their fast speed and large nonlinearity, along with the possibility of using fabrication techniques based on infiltration. In this letter, we report a silicon-organic platform where organic electro-optic material is infiltrated into the narrow gaps of slot-mode metasurfaces with high quality factors.

View Article and Find Full Text PDF

Nanoelectromechanical devices have been used widely in many applications across photonics, electronics, and acoustics. Their incorporation into metasurface systems could be beneficial in designing new types of active photonic devices. Here, we propose a design of active metasurfaces using a nanoelectromechanical system (NEMS) composed of silicon bars which operates under CMOS-level voltage and achieves phase modulation with wavelength-scale pixel pitch.

View Article and Find Full Text PDF

Modern imaging systems can be enhanced in efficiency, compactness, and application through the introduction of multilayer nanopatterned structures for manipulation of light based on its fundamental properties. High transmission multispectral imaging is elusive due to the commonplace use of filter arrays which discard most of the incident light. Further, given the challenges of miniaturizing optical systems, most cameras do not leverage the wealth of information in polarization and spatial degrees of freedom.

View Article and Find Full Text PDF

Photonic topology optimization is a technique used to find the permittivity distribution of a device that optimizes an electromagnetic figure-of-merit. Two common versions are used: continuous density-based optimizations that optimize a gray scale permittivity defined over a grid, and discrete level-set optimizations that optimize the shape of the material boundary of a device. In this work we present a method for constraining a continuous optimization such that it is guaranteed to converge to a discrete solution.

View Article and Find Full Text PDF

Nanoarchitected materials represent a class of structural meta-materials that utilze nanoscale features to achieve unconventional material properties such as ultralow density and high energy absorption. A dearth of fabrication methods capable of producing architected materials with sub-micrometer resolution over large areas in a scalable manner exists. A fabrication technique is presented that employs holographic patterns generated by laser exposure of phase metasurface masks in negative-tone photoresists to produce 30-40 µm-thick nanoarchitected sheets with 2.

View Article and Find Full Text PDF

Spatial light modulators (SLMs) play essential roles in various free-space optical technologies, offering spatio-temporal control of amplitude, phase, or polarization of light. Beyond conventional SLMs based on liquid crystals or microelectromechanical systems, active metasurfaces are considered as promising SLM platforms because they could simultaneously provide high-speed and small pixel size. However, the active metasurfaces reported so far have achieved either limited phase modulation or low efficiency.

View Article and Find Full Text PDF

Planar all-dielectric photonic crystals or metasurfaces host various resonant eigenmodes including leaky guided mode resonances (GMR) and bound states in the continuum (BIC). Engineering these resonant modes can provide new opportunities for diverse applications. Particularly, electrical control of the resonances will boost development of the applications by making them tunable.

View Article and Find Full Text PDF

Many novel and promising single-photon avalanche diodes (SPADs) emerged in recent years. However, some of them may demonstrate a very high dark count rate, even tens of megahertz, especially during the development phase or at room temperature, posing new challenges to device characterization. Gating operation with a width of 10 ns can be used to suppress the dark counts not coincident with the photon arriving time.

View Article and Find Full Text PDF