Publications by authors named "Tianzeng Liang"

Scope: Mycotoxins co-contamination of agricultural products poses a serious threat to human and animal health, especially hepatic dysfunction. Zearalenone (ZEN), deoxynivalenol (DON), and aflatoxin B1 (AFB1) are three commonly co-occurring mycotoxins. This study is to determine whether lycopene (LYC) can alleviate hepatic toxicity induced by the co-occurrence of ZEN, DON, and AFB1 in mice.

View Article and Find Full Text PDF
Article Synopsis
  • Multiple mycotoxins, including zearalenone (ZEN), deoxynivalenol (DON), and aflatoxin B1 (AFB1), can accumulate in the food chain, posing health threats to humans and animals by causing toxicity in the jejunum.
  • The study tested lycopene (LYC) as a potential treatment to reduce jejunal damage in mice exposed to these toxins, showing that LYC improved intestinal structure and increased protective protein levels.
  • Results indicated that LYC mitigated oxidative stress and mitochondrial damage caused by the mycotoxins and potentially reduced the risk of ferroptosis, a form of cell death associated with this kind of damage.
View Article and Find Full Text PDF

Objective: The purpose of this study was to evaluate the protection of glutamate (GLU) against the impairment in intestinal barrier function induced by lipopolysaccharide (LPS) stress in weaned pigs.

Methods: Twenty-four weaned pigs were divided into four treatments containing: i) non-challenged control, ii) LPS-challenged control, iii) LPS+1.0% GLU, and iv) LPS+2.

View Article and Find Full Text PDF

This study assessed the molecular mechanism of EPA or DHA protection against intestinal porcine epithelial cell line 1 (IPEC-1) cell damage induced by deoxynivalenol (DON). The cells were divided into six groups, including the CON group, the EPA group, the DHA group, the DON group, the EPA + DON group and the DHA + DON group. RNA sequencing was used to investigate the potential mechanism, and qRT-PCR was employed to verify the expression of selected genes.

View Article and Find Full Text PDF

Xylooligosaccharide (XOS) has been considered to be an effective prebiotic, but its exact mechanisms remain unknown. This research was conducted to evaluate the effects of XOS on pig intestinal bacterial community and mucosal barrier using a lipopolysaccharide (LPS)-caused gut damage model. Twenty-four weaned pigs were assigned to 4 treatments in a 2 × 2 factorial design involving diet (with or without XOS) and immunological challenge (saline or LPS).

View Article and Find Full Text PDF

Necroptosis, a newly discovered form of programmed cell death that combines the features of apoptosis and necrosis, is important in various physiological and pathological disorders. However, the role of necroptosis on intestinal injury during sepsis has been rarely evaluated. This study aimed to investigate the presence of necroptosis in intestinal injury, and its contribution to intestinal injury in a piglet model challenged with Escherichia coli lipopolysaccharide (LPS).

View Article and Find Full Text PDF

To test the dynamic changes of the expression of genes and microRNA in the gastrocnemius muscle after LPS challenge, 36 piglets were assigned to a control group (slaughtered 0 h after saline injection) and LPS groups (slaughtered at 1 h, 2 h, 4 h, 8 h, and 12 h after LPS treatment, respectively). After LPS treatment, the mRNA expression of IL-1β, IL-6, and TNF-α reached maximal levels at 1 h, 2 h, and 1 h, respectively ( < 0.05), and mRNA expression of TLR4, NODs, muscle-specific ring finger 1, and muscle atrophy F-box peaked at 12 h ( < 0.

View Article and Find Full Text PDF