In this work, the low-cost nitrogen-doped graphene-like mesoporous nanosheets (N-GMNs) was synthesized from the biomass waste of okara for the first time for the construction of a nonenzymatic amperometric vitamin C biosensor. The N-GMNs modified glassy carbon electrode (N-GMNs/GCE) shows much lower overpotential for the electrooxidation of vitamin C comparing to the traditional GCE as well as the GCE modified by carbon nanotubes (CNTs/GCE), indicating the promising of N-GMNs/GCE for the sensitive and selective nonenzymatic amperometric vitamin C biosensing. As a nonenzymatic amperometric biosensor for vitamin C, the N-GMNs/GCE shows a higher sensitivity (144.
View Article and Find Full Text PDFThe published version of this article, unfortunately, contains error. The authors regret that one typo was present in the first author name "Cuxing Xu" when it should be "Cuixing Xu".
View Article and Find Full Text PDFIn this work, the low-cost carbon nanorods assembled hierarchical meso-macroporous carbons networks aerogels (CNs-HMCNAs) was environment-friendly synthesized from a cheap and abundant biomass of apples (Malus pumila Mill) for the first time. The biomass of apples derived CNs-HMCNAs exhibited the unique hierarchical meso-macroporous structure with large specific surface area and high density of edge defective sites. At the CNs-HMCNAs modified GCE (CNs-HMCNAs/GCE), the electron transfer between the glassy carbon electrode (GCE) and the ascorbic acid (AA) (or hydrogen peroxide (HO)) was effectively enhanced, and thus induced a low overvoltage for AA electrooxidation (or HO electroreduction).
View Article and Find Full Text PDFThe authors describe a method for synthesis of a three-dimensional (3D) interconnected carbon nanorod aerogel (3D-ICNA) starting from wax gourd (Benincasa hispida) which is a low-cost biomass. The 3D-ICNA possesses unique 3D interconnected and porous nanostructure, with abundant edge-plane-like defective sites, a large specific surface area (823 m g) and a large pore volume (0.12 cm g).
View Article and Find Full Text PDFMesoporous carbon nanorods (MCNRs) were prepared from honey as the carbon source and by using crab (Brachyuran) shells as the hard template. The unique nanostructure of the MCNRs with their uniform mesoporous size, abundant defective sites and numerous oxygen-functional groups was characterized by nitrogen adsorption-desorption isotherms, X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy. Cyclic voltammograms of a glassy carbon electrode (GCE) modified with MCNRs revel a higher peak current density and lower peak potential (-0.
View Article and Find Full Text PDFIn this paper, kelp (Laminaria japonica), as a kind of abundant biomass, is used as the precursor for the preparation of kelp-derived hierarchical meso-macroporous carbons (K-dHMMCs) through the carbonization under nitrogen (N) atmosphere at high temperature. The K-dHMMCs exhibits the unique structure with high specific surface area of 416.02 m g, large pore volume of 0.
View Article and Find Full Text PDF