Publications by authors named "Tianze Qiu"

Nanoscale metal-organic frameworks (nanoMOFs) are emerging as an important class of nanomaterials for the systematical investigation of biomedically relevant structure-property relationship (SPR) due to their highly tailorable features. In this work, the reticular chemistry approach is shown to explore the SPR of a fcu-type Zr(IV)-nanoMOF for T -weighted magnetic resonance imaging (MRI). Isoreticular replacement of the eight-coordinated square-antiprismatic Zr(IV) by nine-coordinated Gd(III) brings a stoichiometric water capped on the square-antiprismatic site, enabling the relaxation transfer in the inner-sphere, giving the r value of 4.

View Article and Find Full Text PDF

Developing novel synthetic strategies to downsize metal-organic frameworks (MOFs) from polydisperse crystals to monodisperse nanoparticles is of great importance for their potential bioapplications. In this work, a novel synthetic strategy termed gelothermal synthesis is proposed, in which coordination polymer gel is first prepared and followed by a thermal reaction to give the monodisperse MOF nanoparticles. This novel synthetic strategy successfully leads to the isolation of Materials of Institute Lavoisier (MIL-88), Cu(II)-fumarate MOFs (CufumDMF), and Zeolitic Imidazolate Frameworks (ZIF-8) nanoparticles.

View Article and Find Full Text PDF

Immunomodulation has made remarkable progress in fighting infectious disease and cancer. Conventionally, immunomodulation largely relies on chemical/biochemical agents, which, unfortunately, suffer from sever off-target adverse effects. Recent insights into nano-bio interactions suggest that nanomaterials can directly participate in immunomodulation.

View Article and Find Full Text PDF

Breast cancer is the cancer with the highest incidence all over the world. Phosphatidylinositol 3-kinase is an important regulator of intracellular signaling pathways, which is frequently mutated and overexpressed in majority of human breast cancers, and the inhibition of PI3K has been considered as a promising approach for the treatment of the cancer. Here, we report our design and synthesis of new 7-azaindole derivatives as PI3K inhibitors through the scaffold hopping strategy.

View Article and Find Full Text PDF

Developing feasible ways to achieve tunable gate-opening pressure (P) while minimizing the side effects on the adsorption capacity and enthalpy is greatly desired for flexible MOFs. In this work, we focused on solving this issue by cobalt substitution. We showed the successful modulation of the energy required for the reversible transformation of a soft paddle-wheel so that the whole framework presented a substitution-dependent P for CO adsorption.

View Article and Find Full Text PDF