Publications by authors named "Tianyun Lu"

Natural polymers play a non-negligible role in the development of green and sustainable sensors. However, their poor flame retardancy and deficient thermal stability inevitably restrict their application in sensors for monitoring the fire full-process. In this work, a facile and eco-friendly method for the large-scale preparation of flexible films composed of bamboo fiber (BF), carboxymethyl cellulose (CC), and graphene (GN) by solution casting was put forward.

View Article and Find Full Text PDF

Five national urban agglomerations are selected according to the Fourteenth Five-Year Plan, namely the Yangtze River Delta, the Pearl River Delta, Beijing-Tianjin-Hebei, the Middle reaches of the Yangtze River, and Chengdu-Chongqing. The study on synergistic effects of such national strategic planning urban agglomerations, defined as coordinated degrees, and their time-series trends from 2016 to 2021 is significant for the practice of the national "double carbon" goal. Spatial differentiation of coordinated degree in five agglomerations is analyzed based on the Theil Index, along with regional linkage strength of coordinated degree under the gravity model.

View Article and Find Full Text PDF

The application of conductive hydrogels in flexible wearable devices has garnered significant attention. In this study, a self-healing, anti-freezing, and fire-resistant hydrogel strain sensor is successfully synthesized by incorporating sustainable natural biological materials, viz. Tremella polysaccharide and silk fiber, into a polyvinyl alcohol matrix with borax cross-linking.

View Article and Find Full Text PDF

In this study, we present an innovative environmental silicon-, phosphorus-, and nitrogen-triple lignin-based flame retardant (Lig-K-DOPO). Lig-K-DOPO was successfully prepared by condensation of lignin with flame retardant intermediate DOPO-KH550 synthesized via Atherton-Todd reaction between 9, 10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO) and γ-aminopropyl triethoxysilane (KH550A). The presence of silicon, phosphate, and nitrogen groups was characterized by FTIR, XPS, and P NMR spectroscopy.

View Article and Find Full Text PDF

Flexible and environmentally friendly bio-based films have attracted significant attention as next-generation fire-responsive sensors. However, the low structural stability, durability, and flame retardancy of pure bio-based films limit their application in outdoor and extreme environments. Here, we report the design of a sustainable bio-based composite film assembled from carboxymethyl-modified sisal fibre microcrystals (C-MSF), carboxymethyl chitosan (CMC), graphene nanosheets (GNs), phytic acid (PA), and trivalent iron ions (Fe).

View Article and Find Full Text PDF

Given their environment friendliness, light weight, and availability, bio-films have attracted wide interest for various applications in sensor materials. However, obtaining sensors with good environmental stability, excellent flame retardancy, and high wet strength remains a challenge. Herein, we prepared sensitive water, temperature and flame-responsive multi-function bio-films (named as PSCG bio-films) by combining peach gum polysaccharide, silk nanofibres, citric acid, and graphene.

View Article and Find Full Text PDF

Early warning sensors rapidly monitor critical temperatures, humidity, and fires, which are crucial to reduce or avoid natural disasters in complex environments, such as fire or water disasters. Here, a highly sensitive, readable, and dual-functional sensor is designed for a fast-response fire alarm and rapid humidity detection based on sustainable biological films (named MSCG films). The MSCG films are composed of grafted sisal nanofibers (MgC), silk nanofibers, graphene, and citric acid (CA).

View Article and Find Full Text PDF

Low-cost and flexible biofilm humidity sensors with good wet strength are crucial for humidity detection. However, it remains a great challenge to integrate good reversibility, rapid humidity response, and robust humid mechanical strength in one sensor. In this respect, we report a facile method to prepare a sustainable biofilm (named MC film) from sisal cellulose microcrystals (MSF--COOH) and citric acid (CA).

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionnk1em6d3kr808r91srob4oepdvm11k79): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once