This study examines the application of AI voice assistants in Chinese postpartum follow-up phone calls, with particular focus on how interaction design strategies influence users' self-disclosure intention. A 2 (voice gender: female/male) × 3 (self-disclosure strategies: normal conversation without additional disclosure/objective factual disclosure/emotional and opinion-based disclosure) mixed experimental design (n = 395) was conducted to analyze how the gender and self-disclosure strategies of voice assistants affect users' stereotypes (perceived warmth and competence), and how these stereotypes, mediated by privacy calculus dimensions (perceived risks and perceived benefits), influence self-disclosure intention. The experiment measured various indicators using a 7-point Likert scale and performed data analysis through analysis of variance (ANOVA) and structural equation modeling (SEM).
View Article and Find Full Text PDF