Acta Biochim Biophys Sin (Shanghai)
May 2024
Bone cancer pain (BCP), due to cancer bone metastasis and bone destruction, is a common symptom of tumors, including breast, prostate, and lung tumors. Patients often experience severe pain without effective treatment. Here, using a mouse model of bone cancer, we report that MOTS-c, a novel mitochondrial-derived peptide, confers remarkable protection against cancer pain and bone destruction.
View Article and Find Full Text PDFIntense and persistent oxidative stress, excessive inflammation, and impaired angiogenesis severely hinder diabetic wound healing. Bioactive hydrogel dressings with immunoregulatory and proangiogenic properties have great promise in treating diabetic wounds. However, the therapeutic effects of dressings always depend on drugs with side effects, expensive cytokines, and cell therapies.
View Article and Find Full Text PDFThe healing of diabetic wounds is hindered by various factors, including bacterial infection, macrophage dysfunction, excess proinflammatory cytokines, high levels of reactive oxygen species, and sustained hypoxia. These factors collectively impede cellular behaviors and the healing process. Consequently, this review presents intelligent hydrogels equipped with multifunctional capacities, which enable them to dynamically respond to the microenvironment and accelerate wound healing in various ways, including stimuli -responsiveness, injectable self-healing, shape -memory, and conductive and real-time monitoring properties.
View Article and Find Full Text PDFAdsorbents with high adsorption capacity, sustainability, and reusability are desired in wastewater treatments. Herein, covalently crosslinked microporous cryogels with efficient removal of cationic dyes are fabricated by freezing radical copolymerization using methacrylated alginate (AlgMA) and sodium p-styrenesulfonate (NaSS). The chemical structure, morphology, and thermal stability of the AlgMA/PNaSS cryogels are characterized.
View Article and Find Full Text PDFNeovascularization is critical to improve the diabetic microenvironment, deliver abundant nutrients to the wound and promote wound closure. However, the excess of oxidative stress impedes the healing process. Herein, a self-adaptive multifunctional hydrogel with self-healing property and injectability is fabricated through a boronic ester-based reaction between the phenylboronic acid groups of the 3-carboxyl-4-fluorophenylboronic acid -grafted quaternized chitosan and the hydroxyl groups of the polyvinyl alcohol, in which pro-angiogenic drug of desferrioxamine (DFO) is loaded in the form of gelatin microspheres (DFO@G).
View Article and Find Full Text PDF