Background: The detection rate of thyroid nodules has witnessed a significant surge in recent years, triggering heightened public apprehension. Short video platforms such as TikTok and BiliBili have showed tremendous potential in the dissemination of health information. There is a plethora of videos about thyroid nodules on TikTok and BiliBili, but the quality and reliability of videos concerning thyroid nodules remains unknown.
View Article and Find Full Text PDFThe success of complex tissue and internal organ reconstruction relies principally on the fabrication of a 3D vascular network, which guarantees the delivery of oxygen and nutrients in addition to the disposal of waste. In this study, a rapidly forming cell-encapsulated double network (DN) hydrogel is constructed by an ultrasonically activated silk fibroin network and bioorthogonal-mediated polyethylene glycol network. This DN hydrogel can be solidified within 10 s, and its mechanical property gradually increases to ∼20 kPa after 30 min.
View Article and Find Full Text PDFMounting evidence has demonstrated that microRNAs (miRNAs or miRs) play significant roles in various types of human tumors, including retinoblastoma (RB). However, the biological role and regulatory mechanisms of miRNAs in RB remain to be fully elucidated. The present study was designed to identify the regulatory effects of miRNAs in RB and the underlying mechanisms.
View Article and Find Full Text PDFAn injectable BMSC-encapsulated double network (DN) hydrogel was fabricated via silk fibroin (SF) and poly(ethylene glycol) (PEG), which could efficiently support the survival and proliferation of BMSCs in vitro as well as cartilage repair in vivo, and provides a new strategy for cartilage tissue engineering.
View Article and Find Full Text PDF3D bioprinting is one of the latest trends in regenerative medicine due to its capacity for constructing highly organized tissues with living cells. In this work, silk fibroin (SF) together with hydroxypropyl methyl cellulose (HPMC) was used to print bone marrow mesenchymal stem cell (BMSC)-laden double network (DN) hydrogel for cartilage tissue repair. The β-sheet structure formed among SF molecules was set as the rigid and brittle first network, while the cross-linking of HPMC-MA was set as the soft and ductile second network.
View Article and Find Full Text PDFArticular cartilage has limited self-healing ability due to its lack of abundant nutrients and progenitor cells. In this study, an injectable hydrogel system consisting of collagen type I-tyramine (Col-TA) and hyaluronic acid-tyramine (HA-TA) was fabricated as the bone marrow mesenchymal stem cell (BMSC)-laden hydrogel system for cartilage regeneration. Next, the physiochemical properties of this hydrogel system were well characterized and optimized, including gelation time, stiffness, water absorption and degradability.
View Article and Find Full Text PDFBioorg Med Chem Lett
January 2020
Starting from easy accessible pyrazoletetrahydropyran acetals, a series of new pyrazolone spirocyclohexadienone derivatives were synthesized and assayed for antitumor activity. Compound 10s was identified to possess good antitumor activity. It could induce MDA-MB-231 cancer cell apoptosis in a concentration dependent manner and arrest the cell cycle progression mainly at the G1 phase.
View Article and Find Full Text PDFLiver tissue engineering is going to be an effective treatment for end-stage liver disease. In this work, we distributed bone marrow mesenchymal stem cells (BMSCs) into a fast-forming hydrogel system to develop a liver-mimicking construct for liver regeneration. The advantage of this hydrogel system was that this BMSC-encapsulating hydrogel could be formed via a bioorthogonal reaction between 2-cyanobenzothiazole and cysteine within several seconds.
View Article and Find Full Text PDFMater Sci Eng C Mater Biol Appl
March 2019
Bone-marrow-derived mesenchymal stem cells possess great potential for tissue engineering and regenerative medicine. In the work, an injectable BMSCs-laden hydrogel system was formed by enzyme-catalyzed crosslinking of hyaluronic acid-tyramine and chondroitin sulfate-tyramine in the presence of hydrogen peroxide and horseradish peroxidase, which was used as a 3D scaffold to explore the behavior of the mesenchymal stem cells. Afterward, the gelation rate, mechanical properties, as well as the degradation process of the scaffold were well characterized and optimized.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
February 2019
Many patients suffer from bone injury and self-regeneration is not effective. Developing new strategies for effective bone injury repair is highly desired. Herein, collagen, an important component of the extracellular matrix, was modified with glycidyl methacrylate.
View Article and Find Full Text PDFGellan gum hydrogel holds great potential in tissue engineering, but the high phase transition temperature greatly inhibits the applications in biomedical field. In this study, gellan gum was modified with methacrylic anhydride, and then the phase transition temperature was reduced. The functionalized gellan gum together with type I collagen was gelled by ion/photo dual-cross-linking for fabricating bone marrow-derived mesenchymal stem cells (BMSCs)-encapsulating hydrogel for vascularization.
View Article and Find Full Text PDFAn injectable in situ fast-forming hydrogel was easily fabricated through the inverse electron demand Diels-Alder click reaction between trans-cyclooctene and tetrazine. This hydrogel system simultaneously encapsulated bone morphogenetic protein-2 and BMSCs which showed potential applications in 3D bio-printing and tissue engineering.
View Article and Find Full Text PDF