The interplay between chirality with magnetism can break both the space and time inversion symmetry and have wide applications in information storage, photodetectors, multiferroics and spintronics. Herein, we report the chiral transition-metal complex cation-based lead halide, R-CDPB and S-CDPB. In contrast with the traditional chiral metal halides with organic cations, a novel strategy for chirality transfer from the transition-metal complex cation to the lead halide framework is developed.
View Article and Find Full Text PDFCircularly polarized phosphorescent (CPP) materials, especially chiral platinum(II) complexes, which combine the advantages of both circularly polarized luminescence (CPL) and phosphorescence, show broad potential applications in chiral optoelectronic devices. Developing CPP emitters with both excellent chiroptical properties and high yield is urgently needed. Here, a chiral cation strategy is employed to construct the CPP Pt(II) complexes /-ABA·[Pt(ppy)Cl] and /-MBA·[Pt(ppy)Cl] through a simple one-step reaction with almost 100% yield.
View Article and Find Full Text PDFLead-free organic-inorganic hybrid perovskites are one class of promising optoelectronic materials that have attracted much attention due to their outstanding stability and environmentally friendly nature. However, the intrinsic band gap far from the Shockley-Queisser limit and the inferior electrical properties largely limit their applicability. Here, a considerable band-gap narrowing from 2.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
October 2023
Due to the pronounced anisotropic response to circularly polarized light, chiral hybrid organic-inorganic metal halides have been regarded as promising candidates for the application in nonlinear chiroptics, especially for the second-harmonic generation circular dichroism (SHG-CD) effect. However, designing novel lead-free chiral hybrid metal halides with large anisotropy factors and high laser-induced damage thresholds (LDT) of SHG-CD remains challenging. Herein, we develop the first chiral hybrid germanium halide, (R/S-NEA) Ge I ⋅H O (R/S-NGI), and systematically investigated its linear and nonlinear chiroptical properties.
View Article and Find Full Text PDFAll lead-free inorganic halide perovskites, as efficient solid-state light emission materials, have become ideal green optoelectronic materials to replace lead halide perovskites for diversified lighting and display applications with their excellent stability. Here, we investigated the pressure-derived optical and structural response of a zero-dimensional lead-free perovskite RbSbCl through applying controllable pressure. A pressure-induced blue shift of the broadband emission was achieved, and it was followed by the emission color transformation from yellow to green, which was ascribed to the electron-phonon coupling weakening and the suppression of structural deformation upon lattice contraction.
View Article and Find Full Text PDFThe pressure induced emission (PIE) behavior of halide perovskites has attracted extensive interest due to its potential application in pressure sensors and trademark security. However, the PIE phenomenon of white-light-emitting hybrid perovskites (WHPs) is rare, and that at pressures above 10.0 GPa has never been reported.
View Article and Find Full Text PDFSupramolecular coordination complexes with solid-state stimuli-responsive characteristics are highly desirable but are rarely reported. Herein, we describe two coordination-driven self-assembled monoanthracene or dianthracene-based hexagonal metallacycles by subtle structure modification. Notably, the dianthracene-containing hexagon exhibits tricolor mechanochromic and vapochromic characteristics, while the monoanthracene-containing hexagon does not show obvious changes toward mechanical force.
View Article and Find Full Text PDF