Angew Chem Int Ed Engl
November 2024
Sensors (Basel)
September 2023
Recently, cardiovascular disease has become the leading cause of death worldwide. Abnormal heart rate signals are an important indicator of cardiovascular disease. At present, the ECG signal acquisition instruments on the market are not portable and manual analysis is applied in data processing, which cannot address the above problems.
View Article and Find Full Text PDFBiological ion channels regulate the ion flow across cell membrane via opening or closing of the pores in response to various external stimuli. Replicating the function of high ion gating effects with artificial porous materials has been challenging. Herein, we report that the self-assembled two-dimensional metal-organic framework (MOF) membrane can serve as an excellent nanofluidic platform for smart regulation of ion transport.
View Article and Find Full Text PDFReproducing ion channel-based neural functions with artificial fluidic systems has long been an aspirational goal for both neuromorphic computing and biomedical applications. In this study, neuromorphic functions were successfully accomplished with a polyelectrolyte-confined fluidic memristor (PFM), in which confined polyelectrolyte-ion interactions contributed to hysteretic ion transport, resulting in ion memory effects. Various electric pulse patterns were emulated by PFM with ultralow energy consumption.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2023
Proton conductors have attracted great attention in various fields, especially in energy production. Here, we find that graphdiyne oxide (GDYO), derived from graphdiyne (GDY), features the highest proton conductivity of 0.54 S cm (100 % RH, 348 K) among the oxidized carbon allotropes reported so far.
View Article and Find Full Text PDFThe sensors based on ion transport in a confined nano-/microchannel (i.e., iontronic sensors) have brought new opportunities for neurochemical assay, especially for electroinactive molecules.
View Article and Find Full Text PDFNanofluidic memristors are memory resistors based on nanoconfined fluidic systems exhibiting history-dependent ion conductivity. Toward establishing powerful computing systems beyond the Harvard architecture, these ion-based neuromorphic devices attracted enormous research attention owing to the unique characteristics of ion-based conductors. However, the design of nanofluidic memristor is still at a primary state and a systematic guidance on the rational design of nanofluidic system is desperately required for the development of nanofluidic-based neuromorphic devices.
View Article and Find Full Text PDFDeveloping techniques for the highly sensitive assay of neurotransmitters is essential for understanding physiological and pathological processes. Here, we demonstrate a fast-scanning potential (FSP)-gated organic electrochemical transistor (OECT): for the highly sensitive sensing of dopamine (DA) in a living rat brain. The configuration combines the selectivity of fast-scan cyclic voltammetry (FSCV) with the high sensitivity of an OECT.
View Article and Find Full Text PDFNanofluidic ionic diodes have attracted much attention, because of the unique property of asymmetric ion transport and promising applications in molecular sensing and biosensing. However, it remains a challenge to fabricate diode-like nanofluidic system with molecular-size pores. Herein, we report a new and facile approach to construct nanofluidic ionic diode by in situ asymmetric growth of metal-organic frameworks (MOFs) in nanochannels.
View Article and Find Full Text PDFACS Appl Bio Mater
January 2021
Inspired by the information transmission mechanism in the central nervous systems of life, synapse-mimicking devices have been designed and fabricated for the purpose of breaking the bottleneck of von Neumann architecture and realizing the construction of effective hardware-based artificial intelligence. In this case, synaptic iontronic devices, dealing with current information with ions instead of electrons, have attracted enormous scientific interests owing to their unique characteristics provided by ions, such as the designability of charge carriers and the diversity of chemical regulation. Herein, the basic conception, working mechanism, performance metrics, and advanced applications of synaptic iontronic devices based on three-terminal transistors and two-terminal memristors are systematically reviewed and comprehensively discussed.
View Article and Find Full Text PDFIon transport has been widely used for various applications such as sensing, desalination and energy conversion; however, nearly all applications are based on steady-state ion transport. Herein, we for the first time demonstrate the capability of transient ion transport for sensing with both high spatial (∼μm) and temporal (∼ms) resolution by using pH as the model target. Transient ion transport behavior (, time-dependent ion current change) was observed by applying high-frequency pulse potential.
View Article and Find Full Text PDFUnderstanding the dynamic behavior of charged particles driven by flow and electric field in nanochannels/pores is highly important for both fundamental study and practical applications. While a great breakthrough has been made in understanding the translocation dynamics of charged particles within the nanochannels/pores, studies on the dynamics of particles at the orifice of nanochannels/pores are scarcely reported. Here, we study particle motion at a smaller-sized orifice of a nanopipette by combining experimentally observed current transients with simulated force conditions.
View Article and Find Full Text PDFThis paper presents a novel robust adaptive tracking control method for a hypersonic vehicle in a cruise flight stage based on interval type-2 fuzzy-logic system (IT2-FLS) and small-gain approach. After the input-output linearization, the vehicle model can be decomposed into two uncertain subsystems by considering matching disturbances and parametric uncertainties. For each subsystem, an interval type-2 Takagi-Sugeno-Kang fuzzy logic system (IT2-TSK-FLS) is then employed to approximate the unavailable model information.
View Article and Find Full Text PDFUnderstanding the real-time correlation between chemical patterns and neural processes is critical for deciphering brain function. Voltammetry has enabled this task but with a number of challenges for current-based electrolysis in vivo. Herein, we report galvanic redox potentiometry (GRP) potentially as a universal strategy for in vivo monitoring of neurochemicals, with ascorbic acid (AA) as a typical example.
View Article and Find Full Text PDFChem Commun (Camb)
October 2014
Pd@N-doped carbon (Pd@CN) exhibited four and two times higher peak current density toward ethanol electrooxidation than Pd@active carbon and Pd@non-nitrogen carbon. Controlled experimental results indicated that the incorporation of nitrogen into the carbon matrix improved the percentage of Pd(0) and increased the binding energy of Pd in Pd@CN, and accordingly enhanced the catalytic activity.
View Article and Find Full Text PDF